Improving Multiprocessor Real-Time Systems with Bursty Inputs under Global EDF using Shapers

Yue Tang¹, Yuming Jiang², Xu Jiang¹, Nan Guan¹

¹ The Hong Kong Polytechnic University ²Norwegian University of Science and Technology
Outline

• Motivation

• Framework

• Analysis Details

• Evaluation
Outline

• Motivation

• Framework

• Analysis Details

• Evaluation
Motivation

• Bounded delay is essential for real-time systems

• Global EDF is a widely used scheduling strategy
Bounded delay is essential for real-time systems

Global EDF is a widely used scheduling strategy

How to calculate delay bound for GEDF?
Motivation

• Bounded delay is essential for real-time systems
• Global EDF is a widely used scheduling strategy
 • How to calculate delay bound for GEDF?
 • Most work considers periodic tasks
Motivation

• Bounded delay is essential for real-time systems
• Global EDF is a widely used scheduling strategy

• How to calculate delay bound for GEDF?

• Most work considers periodic tasks

However

• Bursty tasks are more general
Motivation

• Bursty tasks are more general in real applications
Motivation

- Bounded delay is essential for real-time systems
- Global EDF is a widely used scheduling strategy

- How to calculate delay bound for GEDF?
- Most work considers periodic tasks
 - However
 - Bursty tasks are more general
 - Possible solution?
 - Model bursty tasks as periodic tasks
Motivation

• Does modeling bursty tasks as periodic tasks work for calculating delay bound? **No!**

Choose the period of periodic tasks

T = 1 ? Overestimate workload → too pessimistic

T = 5 ? Underestimate workload → wrong results (Assume $D = 5$, one task on uniprocessor)

In the extreme case, more than one job arrives simultaneously (e.g., 3 events at time 10)

Can not set the period!
Motivation

• Bounded delay is essential for real-time systems
• Global EDF is a widely used scheduling strategy

• How to calculate delay bound for GEDF?

• Most work considers periodic tasks

However

• Bursty tasks are more general

Possible solution?

• Model bursty tasks as periodic tasks

Our contribution!

• Change bursty tasks to periodic tasks using shapers
Our Contribution

• Use shapers to calculate delay bound for multiprocessors under global EDF
• Design a heuristic algorithm to adjust the parameters of shapers for higher acceptance ratio
Outline

• Motivation

• Framework

• Analysis Details

• Evaluation
Framework

Why our approach is correct?
Correctness

our calculated delay bound
(changing bursty tasks as periodic)
Correctness

Calculated delay bound
(modeling bursty tasks as periodic)

Our calculated delay bound
(changing bursty tasks as periodic)
Correctness

Assume $D = 5$, one task on uniprocessor

If consider the delay bound at the scheduler → schedulable

If consider the overall delay → unschedulable
Outline

• Motivation

• Framework

• Analysis Details

• Evaluation
System Model

- Task Model

 For each task, it has

 Worst case execution time C

 Relative deadline D

 Priority indicator λ

- Scheduling strategy

 A more general global EDF scheduling

 Relative deadline only decides a task’s finish time

 The priority of a task is decided by priority indicator

Arrival curve α: maximum number of arrived events in any length of time interval
Shaper

• Behavior

Process job sequences and force its output job sequences to confirm to some time constraints

• Shaper Component

When generating periodic outputs, the shaper/shaping function is uniquely decided by period T.

\[\text{Output arrival curve } \alpha' = \alpha \otimes \sigma \]
Shaper

• Behavior

Process job sequences and force its output job sequences to confirm to some time constraints

• Larger number of simultaneously arrived jobs \rightarrow larger delay bound at the shaper

• Smaller period of shaper \rightarrow smaller delay bound at the shaper
Global EDF Component

- Model the global EDF (GEDF) scheduler as a GEDF component

\[\text{Delay} = \text{Caldelay} (\text{input tasks, analysis techniques}) \]
Model the System with Shapers

- A system with shapers is modeled as a sequence of abstract components
How to Analyze (for given shapers)

• Theorem

For each task, the overall delay bound is equal to the sum of that at the shaper and that of the scheduler

\[D^i = D^i_1 + D^i_2 \]
How to Choose Shapers

• For periodic outputs, the behavior is decided by the period of shapers

• Why difficult to decide the period T

\[D^i = D^i_1 + D^i_2 \]

① Increase T \(\rightarrow \) larger \(D^i_1 \), smaller \(D^i_2 \)

Decrease T \(\rightarrow \) smaller \(D^i_1 \), larger \(D^i_2 \)

② The calculation \(D^i_2 \) depends on other tasks

③ Enumerating all possible values is low-efficient

• We propose a heuristic algorithm for higher acceptance ratio
Outline

• Motivation

• Framework

• Analysis Details

• Evaluation
Evaluation (acceptance ratio)

The only one existing work for bursty inputs under global EDF

Proposed approach, setting the period of the shaper based on the input task

Without simultaneously arrived jobs

Proposed approach, setting the period of the shaper based on the heuristic

Proposed approach, setting the period of the shaper arbitrarily
The only one existing work for bursty inputs under global EDF

The normalized delay bound is calculated based on that when setting the period based on the input

Proposed approach, setting the period of the shaper based on the heuristic

Proposed approach, setting the period of the shaper arbitrarily
Thanks for attention!