Improving Multiprocessor Real-Time Systems with Bursty Inputs under Global EDF using Shapers

Yue Tang¹, Yuming Jiang², Xu Jiang¹, Nan Guan¹

¹ The Hong Kong Polytechnic University ²Norwegian University of Science and Technology

Outline

- Motivation
- Framework
- Analysis Details
- Evaluation

Outline

- Motivation
- Framework
- Analysis Details
- Evaluation

- Bounded delay is essential for real-time systems
- Global EDF is a widely used scheduling strategy

- Bounded delay is essential for real-time systems
- Global EDF is a widely used scheduling strategy

• Bounded delay is essential for real-time systems

•

• Global EDF is a widely used scheduling strategy

Most work considers periodic tasks

How to calculate delay bound for GEDF?

- Bounded delay is essential for real-time systems
- Global EDF is a widely used scheduling strategy
- How to calculate delay bound for GEDF?
 - Most work considers periodic tasks
 However
 - Bursty tasks are more general

• Bursty tasks are more general in real applications

• Bounded delay is essential for real-time systems

٠

Global EDF is a widely used scheduling strategy

↓

How to calculate delay bound for GEDF?

Most work considers periodic tasks

However

- Bursty tasks are more general
 Possible solution?
- Model bursty tasks as periodic tasks

Does modeling bursty tasks as periodic tasks work for calculating delay bound?

Choose the period of periodic tasks

- T = 1 ? Overestimate workload \rightarrow too pessimistic
- T = 5 ? Underestimate workload \rightarrow wrong results (Assume D = 5, one task on uniprocessor)

In the extreme case, more than one job arrives simultaneously (e.g., 3 events at time 10)

Can not set the period !

- Bounded delay is essential for real-time systems
 - How to calculate delay bound for GEDF? ٠ Most work considers periodic tasks ٠ However Bursty tasks are more general • Possible solution? Model bursty tasks as periodic tasks X • **Our contribution !**

• Global EDF is a widely used scheduling strategy

Change bursty tasks to periodic tasks using shapers

Our Contribution

- Use shapers to calculate delay bound for multiprocessors under global EDF
- Design a heuristic algorithm to adjust the parameters of shapers for higher acceptance ratio

Outline

Motivation

• Framework

Analysis Details

Evaluation

Framework

Why our approach is correct?

Correctness

our calculated delay bound (changing bursty tasks as periodic)

Correctness

calculated delay bound (modeling bursty tasks as periodic)

our calculated delay bound (changing bursty tasks as periodic)

Correctness

calculated delay bound (modeling bursty tasks as periodic)

our calculated delay bound (changing bursty tasks as periodic)

Assume D = 5, one task on uniprocessor

If consider the delay bound at the scheduler \rightarrow schedulable If consider the overall delay \rightarrow unschedulable

Outline

- Motivation
- Framework
- Analysis Details
- Evaluation

System Model

•	Task Model •	Scheduling strategy
	For each task, it has	A more general global EDF scheduling
	Worst case execution time C	
	Relative deadline D	Relative deadline only decides a task's finish time
	Priority indicator λ ———————————————————————————————————	The priority of a task is decided by priority indicator

Arrival curve *a*: maximum number of arrived events in any length of time interval

Shaper

• Behavior

Process job sequences and force its output job sequences to confirm to some time constraints

• When generating periodic outputs, the shaper/shaping function is uniquely decided by period T.

Shaper

• Behavior

Process job sequences and force its output job sequences to confirm to some time constraints

- Larger number of simultaneously arrived jobs \rightarrow larger delay bound at the shaper
- Smaller period of shaper \rightarrow smaller delay bound at the shaper

Global EDF Component

• Model the global EDF (GEDF) scheduler as a GEDF component

Delay = <u>Caldelay</u> (input tasks, analysis techniques)

Model the System with Shapers

• A system with shapers is modeled as a sequence of abstract components

How to Analyze (for given shapers)

• Theorem

For each task, the overall delay bound is equal to the sum of that at the shaper and that of the scheduler

 $D^i = D^i_1 + D^i_2$

How to Choose Shapers

- For periodic outputs, the behavior is decided by the period of shapers
- Why difficult to decide the period T

 $D^i = D^i_1 + D^i_2$

① Increase T \rightarrow larger D_1^i , smaller D_2^j

Decrease T \rightarrow smaller D_{1}^{i} , larger D_{2}^{i}

- (2) The calculation D_2^i depends on other tasks
- ③ Enumerating all possible values is low-efficient
- We propose a heuristic algorithm for higher acceptance ratio

Outline

- Motivation
- Framework
- Analysis Details
- Evaluation

Evaluation (acceptance ratio)

Evaluation (normalized delay bound)

With simultaneously arrived jobs

- EXT EXT - T = random - T = random $\nabla - T = heuristic$ $\nabla - T = heuristic$ 16 16 Proposed approach, setting Normalized Delay Bound Normalized Delay Bound the period of the shaper 12 The normalized delay bound based on the heuristic is calculated based on that when setting the period based on the input Jitter-Period-Ratio Jitter-Period-Ratio 20 20 - EXT - EXT -T = random \frown T = random $\nabla - T = heuristic$ $-\nabla - T = heuristic$ 16 -16 The only one existing Normalized Delay Bound Normalized Delay Bound work for bursty inputs 12 12 Proposed approach, setting under global EDF the period of the shaper arbitrarily 4. 28 2019/5/16 70 80 90 100 110 60 100 110 60 70 80 90 Period Period

Without simultaneously arrived jobs

Thanks for attention !