IntroductionThe ModelsASAP/ALAPILP FormulationExperimental EvaluationCase StudyConclusionBibliography0000000000000000000000000

Optimal Scheduling of Precedence-constrained Task Graphs on Heterogeneous Distributed Systems with Shared Buses

Sanjit Kumar Roy¹, Sayani Sinha², Kankana Maji², Rajesh Devaraj¹, and Arnab Sarkar¹

IEEE ISORC 2019

May 9, 2019

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

¹Indian Institute of Technology Guwahati ²Jadavpur University

Table of	f Conten	its				
			ILP Formulation	Experimental Evaluation	Case Study 000	Bibliography O

- 1 Introduction
- 2 The Models
- 3 ASAP/ALAP
- ILP Formulation
 - ILP1
 - ILP2
- 5 Experimental Evaluation
 - Experiment-1
 - Experiment-2
 - Experiment-3
- 6 Case Study
- Conclusion
- 8 Bibliography

Introduction •0000	The Models	ILP Formulation	Experimental Evaluation	Case Study 000	Conclusion O	Bibliography O
Introdu	ction					

- Applications in many time-critical cyber-physical systems are often represented as *Precedence-constrained Task Graphs* (PTGs)
- There is an increasing trend towards their implementation on distributed heterogeneous platforms
 - consisting of heterogeneous processing elements
 - shared buses (CAN, LIN, FlexRay etc.) [1]
- On a distributed platform consisting of heterogeneous processing and communication resources,
 - execution of a task may require different amounts of time on different processing elements.
 - transmission of a message may require different amounts of time on different communication resources

Introduction 00000	The Models	ASAP/ALAP 000	Experimental Evaluation	Case Study	Conclusion O	Bibliography O
Introdu	ction Co	ontd.				

Given a PTG representing a real-time application and a heterogeneous platform, successful execution/transmission of the task/message nodes while satisfying all timing, precedence and resource related specifications, is ultimately a *scheduling* problem

- Scheduler design schemes for PTGs can be broadly classified as *static* (offline) and *dynamic* (online) [2]
- In safety-critical systems such as automotive/avionic systems [3], it is often advisable that all timing requirements be guaranteed off-line, before putting the system in operation [4]
- Hence, static off-line scheduling schemes are preferred in such systems to provide a high degree of timing predictability [5]

Introduction		ASAP/ALAP 000	ILP Formulation	Experimental Evaluation	Case Study	Conclusion O	Bibliography O
Introdu	ction Co	ntd.					

- Most existing real-time static scheduling approaches for PTGs are *list scheduling* based heuristic schemes [2, 6, 7]
- A majority of them attempt to minimize the overall schedule length (*makespan* minimization)
- Such an objective allows maximization of the spare computation bandwidth in the system, which may be used to perform other useful activities
- Many of them assume that the underlying execution platform consists of a fully connected system of processing elements
- There exists a significant class of cyber-physical systems with bus based shared communication links among processors

э

Introdu	etion. H	ouristic x	ontimal				
00000	00000	000	000000000	00000	000		
Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography

- Heuristic schedules
 - typically based on the satisfaction of a set of sufficiency conditions
 - cannot take into consideration all necessary schedulability requirements
 - schedules are sub-optimal in nature
- Optimal solutions
 - can make a fundamental difference in resource-constrained time-critical systems with respect to performance, reliability and other non-functional metrics like cost, power, space etc
 - Optimal schedules can act as benchmarks allowing accurate comparison and evaluation of heuristic solutions [8]

э

イロト イポト イヨト イヨト

Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography
00000							

We design an *Integer Linear Programming (ILP)* based static optimal real-time scheduling strategy for PTGs executing on a distributed platform consisting of heterogeneous processing nodes and inter-connected through a set of heterogeneous shared buses

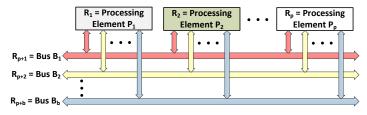


Figure: Platform Model

A set of resources $\{R_1, R_2, \ldots, R_{p+b}\}$ among which,

- {*R*₁, *R*₂,...,*R_p*} denote a set *P* = {*P*₁, *P*₂,...,*P_p*} of *p* heterogeneous processing elements
- { $R_{p+1}, R_{p+2}, \ldots, R_{p+b}$ } denote a set $B = \{B_1, B_2, \ldots, B_b\}$ of *b* heterogeneous shared buses
- Each processing node P_i is connected to all b buses

	0000						
Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography

Computation Model

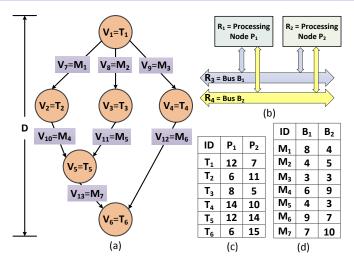
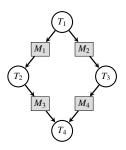


Figure: (a) PTG G, (b) Platform Model ρ , (c) Computation-time Matrix (CT) and (d) Communication-time Matrix (CM).

э

イロト 不得 とうほう イヨン


A *Precedence-constrained Task Graph* (PTG) *G* is described by a quadruple G = (V, E, CT, CM) where,

- $V = \{V_1, V_2, \dots, V_{n+m}\}$ represents a set of nodes
- $\{V_1, V_2, \dots, V_n\}$ represent a set $T = \{T_1, T_2, \dots, T_n\}$ of *n* task nodes
- $\{V_{n+1}, V_{n+2}, \dots, V_{n+m}\}$ denote a set $M = \{M_1, M_2, \dots, M_m\}$ of *m* message nodes
- *E* ⊆ *V* × *V* is a set of edges that describe the *precedence-constraints* among nodes in *V*.
- *CT* is a $n \times p$ computation-time matrix
- *CM* is a *m* × *b* communication-time matrix

Introduction 00000	The Models 000●0	ILP Formulation	Experimental Evaluation	Case Study 000	Bibliography O
Assum	otions				

- Single source node T_1
- Single sink node T_n
- Both source (T_1) and sink (T_n) nodes are tasks.
- Each task node *T_i* is preceded/succeeded by one or more message nodes.
- Each message node M_k is preceded/succeeded by a single task node.
- The communication time for *M_k* is negligible if both preceding and succeeding task nodes are mapped to same processing element.

イロト 不得 とくほ とくほう

Introduction 00000	The Models 0000●		ILP Formulation	Experimental Evaluation	Conclusion O	Bibliography O
Problen	n Formu	lation				

Given a PTG G = (V, E, CT, CM) with end-to-end deadline D, p processing elements and b buses, find:

- A task node assignment $V_i \mapsto R_j$; $1 \le i \le n$ and $1 \le j \le p$
- A message node assignment $V_i \mapsto R_j$; $n + 1 \le i \le n + m$ and $p + 1 \le j \le p + b$
 - If both the preceding and succeeding task nodes of message node M_i are mapped to the same processing element then, $V_i \to \emptyset$
- A start time for each task node and message node, such that
 - length of the total schedule is minimized and
 - meets the deadline D

Earliest/Latest Start Times for PTG Nodes

ASAP/ALAP

000

Introduction

The Models

Let, t_i^s and t_i^l be the ASAP and ALAP time of node V_i , respectively

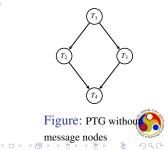
ILP Formulation

• ASAP time computation of task nodes:

- Ignore message nodes in the PTG
- Set ASAP time of the source task node, $t_1^s = 1$
- Compute ASAP times of the remaining task nodes recursively (downward) as follows:

$$t_i^s = \max_{T_j \in pred(T_i)} (t_j^s + \min_{r \in [1,p]} CT_{jr})$$

where, $pred(T_i)$ is the set of immediate predecessors of task node T_i



Conclusion

Bibliography

Case Study

Figure: PTG with message nodes

Earliest/Latest Start Times for PTG Nodes

• ALAP time computation of task nodes:

- Ignore message nodes in the PTG
- Set ALAP time for the sink task node as,

$$t_n^l = D - \min_{r \in [1,p]} CT_{nr}$$

 Compute ALAP times of the remaining task nodes recursively (upward) as follows:

$$t_i^l = \min_{T_j \in succ(T_i)} (t_j^l - \min_{r \in [1,p]} CT_{ir})$$

where, $succ(T_i)$ is the set of immediate successors of task node T_i

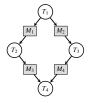
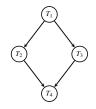
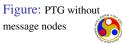
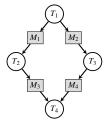




Figure: PTG with message nodes

イロト イポト イヨト イヨト

• ASAP/ALAP computation procedure for message nodes:

- ASAP time of a message node M_k is,


 $t_{n+k}^{s} = t_{i}^{s} + \min_{r \in [1,p]} CT_{ir}$

where, T_i is the predecessor task node of M_k - ALAP time of a message node M_k is,

$$t_{n+k}^l = t_j^l - \min_{r \in [1,b]} CM_{kr}$$

Figure: PTG with message nodes

where, T_j is the successor task node of M_k

			Experimental Evaluation	000	o
ILP For	rmulatio	n: ILP1			

We define binary decision variable,

$$X_{irt} = \begin{cases} 1 & \text{if node } i \text{ starts its execution/transmission} \\ & \text{on } r^{th} \text{ resource at time step } t \\ 0 & \text{Otherwise} \end{cases}$$

where, i = 1, 2, ..., n + m; r = 1, 2, ..., p + b; t = 1, 2, ..., D

						0	
Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography

ILP1

Unique Start Time Constraints:

Start time of each task node should be unique,

$$\forall i \in [1,n] \quad \sum_{r=1}^{p} \sum_{t=t_{i}^{s}}^{t_{i}^{l}} X_{irt} = 1$$
 (1)

Start time of each message node should be unique,

$$\forall M_k | T_i = pred(M_k) \text{ and } T_j = succ(M_k),$$

$$\sum_{r=p+1}^{p+b} \sum_{t=t_{k'}^s}^{t_{k'}^l} X_{k'rt} = 1 - Y_k$$

 $\begin{array}{c}
\hline
T_1 \\
\hline
M_1 \\
\hline
M_2 \\
\hline
T_3 \\
\hline
\hline
T_4 \\
\hline
Figure: PTG
\end{array}$

(2)

where,

$$k' = n + k \text{ and } Y_k = \sum_{r=1}^p \sum_{t_1 = t_i^s}^{t_i^l} \sum_{t_2 = t_i^s}^{t_j^l} X_{irt_1} * X_{jrt_2}$$

Introduction 00000	The Models	ASAP/ALAP 000	Experimental Evaluation	Case Study 000	Conclusion O	Bibliography O
ILP1						

We introduce another binary decision variable $U_{krt_1t_2}$ (= $X_{irt_1} * X_{jrt_2}$) to linearize the non-linear term,

$$Y_k = \sum_{r=1}^p \sum_{t_1=t_i^s}^{t_i^l} \sum_{t_2=t_j^s}^{t_j^l} U_{krt_1t_2}$$
(3)

Now, the non-linear variables $U_{krt_1t_2}$ can be linearized using the following three inequalities,

$$X_{irt_1} \ge U_{krt_1t_2}$$
(4)

$$X_{jrt_2} \ge U_{krt_1t_2}$$
(5)

$$U_{krt_1t_2} \ge X_{irt_1} + X_{jrt_2} - 1$$
(6)

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ・

	The Models		Experimental Evaluation	Case Study 000	Bibliography O
ILP1					

Resource Constraints:

A resource can execute at most one task/message node at a given time. **For processing element:**

$$\forall t \in [1, D] \text{ and } \forall r \in [1, p] \qquad \sum_{i=1}^{n} \sum_{t'=\psi}^{t} X_{irt'} \leqslant 1 \tag{7}$$

where, $\psi = t - CT_{ir} + 1$. For bus element:

$$\forall t \in [1,D] \text{ and } \forall r \in [1,b] \sum_{i=1}^{m} \sum_{t'=\psi}^{t} X_{i'r't'} \leqslant 1$$
(8)

where, i' = i + n, r' = r + p and $\psi = t - CM_{ir} + 1$.

э

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト

	The Models	ILP Formulation	Experimental Evaluation	Case Study 000	Bibliography O
ILP1					

Dependency Constraints:

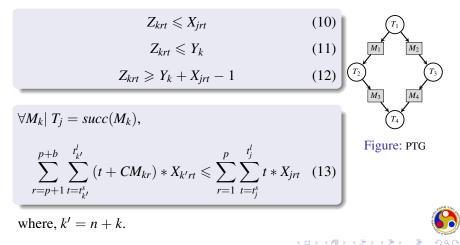
Dependencies between nodes must be satisfied,

$$\forall M_k | T_i = pred(M_k) \text{ and } T_j = succ(M_k),$$

$$\sum_{r=1}^{p} \sum_{t=t_i^s}^{t_i^l} (t + CT_{ir}) * X_{irt} \leqslant \sum_{r=p+1}^{p+b} \sum_{t=t_k^{s'}}^{t_{k'}^l} t * X_{k'rt}$$

$$+ \sum_{r=1}^{p} \sum_{t=t_j^{s}}^{t_j^l} t * X_{jrt} * Y_k$$
(9)
$$Figure: PTG$$

where, k' = n + k.



・ロト ・ 留 ・ ・ ヨ ・ ・ ヨ ・

	The Models		Experimental Evaluation	Conclusion O	
ILP1					

Dependency Constraints Contd.

We, replace the non-linear term $Y_k * X_{jrt}$ by Z_{krt} and linearize by,

	The Models	ASAP/ALAP 000	Experimental Evaluation		Bibliography O
ILP1					

Objective function: Minimize schedule length of the PTG.

$$Minimize \sum_{r=1}^{p} \sum_{t=t_n^s}^{t_n^l} X_{nrt}(t + CT_{nr})$$
(14)

subject to constraints presented in equations 1 - 13.

Introduction 00000	The Models	ILP Formulation	Experimental Evaluation	Conclusion O	Bibliography O
ILP2					

Linearization in equations 10 to 12 may be avoided by replacing equation 9 with the following two equations.

$$\forall M_k | T_i = pred(M_k) \text{ and } T_j = succ(M_k),$$

$$\sum_{r=1}^{p} \sum_{t=t_i^s}^{t_i^l} (t + CT_{ir}) * X_{irt} \leqslant \sum_{r=p+1}^{p+b} \sum_{t=t_k^{s'}}^{t_{k'}^l} t * X_{k'rt}$$

$$+ \sum_{r=1}^{p} \sum_{t=t_j^{s}}^{t_j^l} t * X_{jrt} * Y_k$$
Figure: PTG

where, k' = n + k.

イロト イポト イヨト イヨト

		Experimental Evaluation		Bibliography O
ILP2				

$$\forall M_k \mid T_i = pred(M_k) \text{ and } T_j = succ(M_k),$$

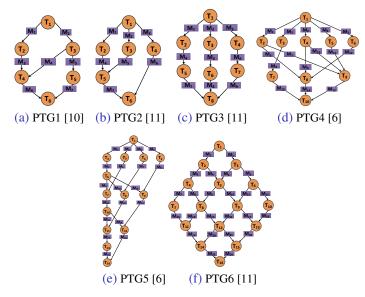
$$\sum_{r=1}^{p} \sum_{t=t_i^{\varsigma}}^{t_i^{l}} (t + CT_{ir}) * X_{irt} \leqslant \sum_{r=1}^{p} \sum_{t=t_j^{\varsigma}}^{t_j^{l}} t * X_{jrt} \quad (15)$$

$$\sum_{r=1}^{p} \sum_{t=t_i^{\varsigma}}^{t_i^{l}} (t + CT_{ir}) * X_{irt} \leqslant \sum_{r=p+1}^{p+b} \sum_{t=t_{k'}^{\varsigma}}^{t_{k'}^{l}} t * X_{k'rt} + C * Y_k$$
(15)
(16)
(16)

where, k' = n + k and *C* is a sufficiently large constant.

 </

			ILP Formulation	Experimental Evaluation	Case Study	Bibliography ⊙
Experir	nental S	etup				


- We evaluate and compare the performance of ILP1 and ILP2
- Performance metrics
 - #Constraints generated
 - Time required to generate a solution
- Experiments have been conducted using six standard PTGs
- The scenarios considered differ in terms of,
 - Number of processing elements (*p*)
 - Number of buses (b)
 - Communication to Computation Ratio (CCR)
 - Deadline (D)
- All experiments are carried out using the CPLEX optimizer [9] version 12.6.2.0, executing on a system having Intel(R) Xeon(R) CPU running Linux Kernel 2.6.32-042stab123.1

э

Experimental Setup

æ

Figure: Benchmark PTGs from [6, 10, 11],

		ILP Formulation	Experimental Evaluation	Case Study 000	Bibliography O
Fynerir	nent_1				

Compared ILP1 and ILP2

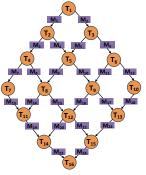
- #processing elements (p) = 4
- #buses (*b*) = 2
- *Communication to Computation Ratio* (*CCR*) = 0.5
- Execution/transmission times generated from a uniform random distribution within the range 5 *ms* to 15 *ms* and scaled properly

PTG	10	100	D	SL	Running	g Time	#Cons	traints
110	п	т	D	SL	ILP1	ILP2	ILP1	ILP2
PTG1	6	7	32	32	0.19	0.07	4681	4112
PTG2	6	7	37	37	0.34	0.10	8734	7925
PTG3	8	9	46	42	7.68	3.72	28601	26918
PTG4	10	15	42	38	35.57	5.73	48905	46064
PTG5	14	19	80	72	111.44	24.73	147313	141512
PTG6	16	24	72	67	1577.40	171.98	226443	218535

Table: Running time (seconds) and #constraints for PTGs

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A


 Introduction
 The Models
 ASAP/ALAP
 ILP Formulation
 Experimental Evaluation
 Case Study
 Conclusion
 Bibliography

 00000
 0000
 000
 000
 000
 0
 0
 0

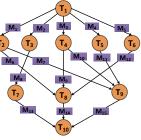
Experiment-2

Compared ILP1 & ILP2 (varying number of task and message nodes)

- PTG6a: Eliminate message nodes M_{11}, M_{16}, M_{17} and task node T_9 from PTG6
- PTG6b: Eliminate message nodes M_9, M_{14}, M_{15} and task node T_8 from PTG6a

(a) PTG6 [11]

PTG	10	n m i		SL	Running	g Time	#Cons	traints
110		m		SL	ILP1	ILP2	ILP1	ILP2
PTG6	16	24	72	67	1577.40	171.98	226443	218535
PTG6a	15	21	69	64	208.07	35.81	160889	154682
PTG6b	14	18	63	58	53.56	10.17	95857	91711


Table: Performance comparison w.r.t PTGs 6, 6a and 6b (second)

Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography
				00000			

Experiment-3

This experiment compares run time overheads incurred by ILP2

- Parameters are,
 - $p \in \{2, 4\}$
 - $b \in \{1, 2\}$
 - $CCR \in \{0.25, 0.5, 0.75\}$
 - $DR \in \{1.0, 1.1, 1.2\})$
 - DR refers to the ratio (D : SL)

(b) PTG4 [6]

			CC	R = 0.25		CCR = 0.5					CCK	CR = 0.75			
		SL	DR	DR	DR	SL	DR	DR	DR	SL	DR	DR	DR		
		SL	1	1.1	1.2	SL	1	1.1	1.2	SL	1	1.1	1.2		
p = 2	b = 1	57	10.93	17.46	131.25	55	38.15	117.27	85.65	58	595.45	514.54	1702.12		
p = 2	b=2	57	9.61	21.61	79.76	54	21.27	33.16	71.15	52	35.35	109.02	85.31		
p = 4	b = 1	42	37.30	109.53	168.96	45	27.30	186.67	173.46	56	27024.51	3925.43	9331.68		
p = 4	b=2	37	1.53	14.76	23.71	38	1.83	5.64	20.11	45	66.82	59.31	150.42		

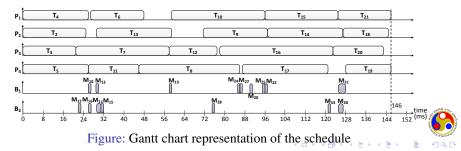
Table: Running time of ILP2 (in seconds) w.r.t PTG4 for different#resources, DR and CCR

Case Study: Adaptive Cruise Controller



Figure: PTG for ACC

Casa St	J						
00000	00000	000	000000000	00000	000		
Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography


Case Study

	T_2	T_3	T_4	T_5	T_6	<i>T</i> ₇	T_8	<i>T</i> 9	<i>T</i> ₁₀	T_{11}	T_{12}	<i>T</i> ₁₃	T_{14}	T_{15}	<i>T</i> ₁₆	<i>T</i> ₁₇	<i>T</i> ₁₈	<i>T</i> ₁₉	T_{20}	<i>T</i> ₂₁
P_1	29	29	26	29	21	43	36	21	37	25	21	20	36	29	43	36	21	21	21	21
P_2	25	27	29	35	23	45	43	25	43	28	25	30	30	27	40	40	18	17	25	22
P_3	32	21	27	27	20	37	45	24	45	26	19	25	40	31	45	30	23	24	20	24
P_4	30	35	34	26	17	40	40	29	40	20	18	26	32	28	42	34	20	18	19	25

Table: Computation time (in ms) of task nodes

	M ₁₀	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}	M_{16}	M ₁₇	M_{18}	M_{19}	M_{20}	M_{21}	M_{22}	M_{23}	M_{24}	M_{25}	M_{26}	M_{27}	M_{28}	M_{29}	M_{30}	M_{31}	M_{32}	M_{33}
B_1	1	1	1	1	2	2	2	2	3	1	1	2	1	1	1	1	1	1	3	3	3	3	2	1
B_2	2	2	1	1	1	1	1	1	2	2	3	3	2	2	2	3	3	3	1	2	2	2	1	1

Table: Transmission time (in ms) of message nodes

Case St	udv					
	The Models	ILP Formulation	Experimental Evaluation	Conclusion O	Bibliography O	

Observations:

- ILP2 takes approximately 21872 secs (~6 hours)
- Makespan is 146 ms
- Message nodes $M_{14}, M_{17}, M_{18}, M_{21}, M_{23}, M_{26}, M_{29}$ and M_{32} are absent in the schedule
- All scheduling constraints are satisfied

Introduction 00000	The Models	ASAP/ALAP 000	ILP Formulation	Experimental Evaluation	Case Study	Conclusion •	Bibliography O
Conclus	sion						

- This work considers the problem of computing optimal schedules for PTGs executing on distributed systems consisting of heterogeneous processing nodes and inter-connected via a limited number of shared buses
- The first version of the proposed ILP formulation requires two sets of computationally expensive linearizations
- Proposed an improved version of the ILP which reduces computational overheads by elegantly avoiding a sub-set of linearizations that are required to handle dependency constraints
- Experimental analysis using standard benchmark PTGs reveal the practical efficacy of our scheme
- Finally, a case study on a cruise control application has been presented

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖▶ ■ 圖

IntroductionThe ModelsASAP/ALAPILP FormulationExperimental EvaluationCase StudyConclusionBibliography000000000000000000000000000

- [1] Z. Guo, R. Liu, X. Xu, and K. Yang, "A survey of real-time automotive systems," 2017.
- [2] H. Arabnejad and J. G. Barbosa, "List scheduling algorithm for heterogeneous systems by an optimistic cost table," *IEEE Transactions on Parallel and Distributed Systems*, vol. 25, no. 3, pp. 682–694, 2014.
- [3] G. Xie, R. Li, and K. Li, "Distributed computing for functional safety of automotive embedded systems," 2016.
- [4] G. C. Buttazzo, *Hard real-time computing systems: predictable scheduling algorithms and applications*. Springer, 2011, vol. 24.
- [5] N. Kandasamy, J. P. Hayes, and B. T. Murray, "Transparent recovery from intermittent faults in time-triggered distributed systems," *IEEE Transactions on Computers*, vol. 52, no. 2, pp. 113–125, 2003.

э

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography

- [6] H. Topcuoglu *et al.*, "Performance-effective and low-complexity task scheduling for heterogeneous computing," *IEEE transactions on parallel and distributed systems*, vol. 13, no. 3, pp. 260–274, 2002.
- [7] G. Xie *et al.*, "Heterogeneity-driven end-to-end synchronized scheduling for precedence constrained tasks and messages on networked embedded systems," *Journal of Parallel and Dist. Comp.*, 2015.
- [8] S. Venugopalan *et al.*, "ILP formulations for optimal task scheduling with communication delays on parallel systems," *IEEE Transactions on Parallel and Distributed Systems*, vol. 26, no. 1, pp. 142–151, 2015.
- "CPLEX Optimizer: https://www.ibm.com/analytics/datascience/prescriptive-analytics/cplex-optimizer." [Online]. Available: https://www.ibm.com/analytics/data-science/ prescriptive-analytics/cplex-optimizer

イロト 不得 とくほ とくほとう ほう

- Introduction
 The Models
 ASAP/ALAP
 ILP Formulation
 Experimental Evaluation
 Case Study
 Conclusion
 Bibliography

 00000
 00000
 0000
 00000
 0000
 000
 0
 0
 0
 - [10] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, "An energy-efficient task scheduling algorithm in dvfs-enabled cloud environment." *J. Grid Comput.*, vol. 14, no. 1, pp. 55–74, 2016.
 - [11] A. Olteanu and A. Marin, "Generation and evaluation of scheduling DAGs: How to provide similar evaluation conditions," *Computer Science Master Research*, vol. 1, no. 1, pp. 57–66, 2011.
 - [12] C. Bolchini and A. Miele, "Reliability-driven system-level synthesis for mixed-critical embedded systems," *IEEE Transactions on Computers*, vol. 62, no. 12, pp. 2489–2502, 2013.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Introduction	The Models	ASAP/ALAP	ILP Formulation	Experimental Evaluation	Case Study	Conclusion	Bibliography
							•

Thank You

