
Incorporating Robustness and Resilience into
Mixed-Criticality Scheduling Theory

Sanjoy Baruah, Washington University in St. Louis, USA
Alan Burns, University of York, UK

8th May 2019



Mixed-Criticality Systems, MCS

I Vestal’s 2007 paper advocated a multi-model view of task
scheduling

I Key parameters of tasks were open to more than one
interpretation

I In particular the estimated worst-case execution time of
each task was no longer a single C value, but was given a
vector of estimates, one per criticality level

I So if there were two criticality levels, χi ∈ {LO, HI} there
would be two estimates of WCET: CL and CH i (with
CH ≥ CL)



Mixed-Criticality Scheduling

I There has been a flood of papers addressing many
different aspects of scheduling for MCS

I There has also been a certain amount of criticism of the
‘Vestal Model’

I Much of this criticism is due to a misunderstanding of what
was the focus of Vestal’s paper

I Safety-critical (high-integrity) system require Verification
and Survivability

I But Vestal’s paper only really concerned Verification



Vestal’s Correctness Criteria

a. if every job of every task τi completes execution within CL
i

units of execution then all jobs should meet their deadlines;
and

b. if a job of some task τi fails to complete execution despite
having executed for CL

i time units, then all jobs of each
HI-criticality task τi should receive up to CH

i units of
execution by their respective deadlines

Since b violates the assumptions under which LO-criticality
verification is required to be performed, no requirements are
placed upon the execution of jobs of LO-criticality tasks



Survivability

I In this paper we focus not on correctness but on
Survivability - also termed Fault Tolerance

I Survivability addresses expectations of system behavior in
the event that the assumptions for correctness fail to fully
hold

I We utilise the notions of Robustness and Resilience
I Informally, the robustness of a system is a measure of the

degree of fault it can tolerate without compromising on the
quality of service it offers

I resilience, by contrast, refers to the degree of fault for
which it can provide degraded yet acceptable (i.e. safe)
quality of service

I Resilience is also know as Graceful Degradation



Robustness and Resilience

I We seek to define quantitative metrics of robustness and
resilience that are applicable to the Vestal model, and to
correlate these metrics to the resulting run-time
survivability guarantees of the system

I To illustrate our approach we shall use the MC-Fluid
scheduling algorithm, but for just a single processor



System Model

I We consider the scheduling of systems of independent
dual-criticality implicit-deadline sporadic tasks upon a
shared preemptive processor

I We assume that a dual-criticality implicit-deadline sporadic
task τi is characterized by the parameters (Ti ,CL

i ,C
H
i , χi),

where χi ∈ {LO, HI} denotes its criticality, CL
i and CH

i its LO

and HI criticality WCETs, and Ti its period
I We require that CL

i ≤ CH
i

I Some additional notation: we let uL
i

def
= (CL

i /Ti) and
uH

i
def
= (CH

i /Ti) denote the LO-criticality and HI-criticality
utilizations of task τi



Additional Notation

Various system utilization parameters are defined:

UL
L

def
=

∑
τi∈τL

uL
i

UL
H

def
=

∑
τi∈τH

uL
i

UH
H

def
=

∑
τi∈τH

uH
i

where τL is the set of LO-criticality task, and τH is the set of
HI-criticality tasks (τ is the full set of tasks)



Basic MC-Fluid Algorithm

1. Each τi initially executes at a constant rate θL
i . That is, at

each time-instant it is executing upon θL
i fraction of a

processor
2. If a job of any task τi does not complete despite having

received CL
i units of execution (equivalently, having

executed for a duration (CL
i /θ

L
i )), then

I All LO-criticality tasks are immediately discarded, and
I Each HI-criticality task henceforth executes at a constant

(higher) rate θH
i



Rates of Progress for MC-Fluid
1. Define ρ as follows:

ρ← max
{

UL
L + UL

H ,U
H
H

}
(1)

2. If ρ > 1 then declare failure; else assign values to the
execution-rate variables as follows:

θH
i ← uH

i /ρ for all τi ∈ τH (2)

θL
i ←


uL

i θ
H
i

θH
i −
(

uH
i −uL

i

) , if τi ∈ τH

uL
i , else (i.e., if τi ∈ τL)

(3)

3. If ∑
τi∈τ

θL
i ≤ 1 (4)

then declare success else declare failure



Approach Employed

I We assume HI-criticality tasks never execute for more than
their HI-criticality bound

I Hence Robustness and Resilience is all about what can be
given to the LO-criticality tasks

I Within the context of MC-Fluid scheduling this means what
rates can be assigned to LO-criticality tasks



Illustrative Example

Ti CL
i CH

i χi uL
i uH

i

τ1 10 2 − LO 0.2 −
τ2 20 6 − LO 0.3 −
τ3 30 3 18 HI 0.1 0.6

UL
L = 0.2 + 0.3 = 0.5

UL
H = 0.1

UH
H = 0.6



Applying Basic MC-Fluid Scheme to the Example

ρ← max{0.5 + 0.1,0.6} = 0.6

Consequently, θH
3 = 0.6/0.6 or 1.0, and

θL
1 = uL

1 = 0.2
θL

2 = uL
2 = 0.3

θL
3 =

uL
3θ

H
3

θH
3 −

(
uH

3 − uL
3

) =
0.1× 1

1− (0.6− 0.1)
=

0.1
0.5

= 0.2

Since
θL

1 + θL
2 + θL

3 = 0.2 + 0.3 + 0.2

which is clearly ≤ 1, Algorithm MCF declares success



Incorporating Robutness

I Scheme is schedulable but not robust or resilient
I Working through the equations, the system remains

correctly schedulable as long as uL
3 ≤ 0.4; equivalently:

CL
3 ≤ 0.4× T3 = 0.4× 30 = 12

I The system can therefore be scheduled in a robust manner
by terminating τ1 and τ2 only upon some job of τ3 executing
beyond 12 time units (rather than CL

3 = 3 time units)
I A reasonable quantitative metric of the robustness of this

schedule is the ratio of these two quantities: 12/3, or 4.



Incorporating Resilience

I This maximum robustness comes at the cost of no further
resilience being possible

I Resilience involves reducing the rate of progress of the
LO-criticality tasks

I It is then application specific how these tasks cope with
having less load than required for normal behaviour



Incorporating Resilience

I Working through the example again it is easy to show that
if we were to reduce the sum of the rates of the
LO-criticality tasks τ1 and τ2 to 3/8 (i.e., 0.375) from 0.5 —
a reduction to 3

4 of the desired level of service — upon
some job of τ3 executing for beyond 3 time units, we would
not need to degrade service to τ1 and τ2 any further as
long as τ3’s jobs do not exceed their HI-criticality WCET
estimate of 18 time units.

I This factor of 3
4 may be considered a quantitative metric of

the resilience of this schedule.



Robustness and Resilience

I In reality we would want both robustness and resilience
I But we cannot maximise both
I We can however choose an attainable robustness value

and then maximise the resilience metric
I With the example we can achieve, for example, (2, 2

3 ) as
apposed to (4,0) or (1, 3

4 )
I In general (r, 4−r

5−r ) , for a valid r



Conclusions

I Pre-runtime verification and run-time survivability are two
distinct aspects of correctness in safety-critical systems

I Mixed-criticality scheduling theory (MCSh) has, thus far,
focused almost exclusively on the verification aspect

I In this paper we have described some of our ongoing
efforts at extending MCSh to incorporate survivability
considerations

I We have proposed quantitative metrics of both aspects of
survivability – robustness and resilience – for mixed-critical
task systems that are represented using the Vestal model



Future Work

I As future work we plan to subject other mixed-critical
scheduling algorithms that have been proposed (such as
AMC, EDF-VD, etc.) to the same form of analysis as we
have done here with MC-Fluid, and thereby develop
survivable implementations of systems that are based
upon these non-fluid mixed-criticality scheduling algorithms

I Also as future work, we plan to revisit some
mixed-criticality scheduling algorithms that have previously
been proposed for addressing the non-survivability of
traditional mixed-criticality scheduling algorithms. We will
seek to characterize the robustness and resilience
properties of these algorithms on the basis of the metrics
that we have proposed in this paper


