
Towards an Edge-Located Time-Series Database

Timothy Krentz, Abhishek Dubey, Gabor Karsai

Institute for Software Integrated Systems

Vanderbilt University



Emerging Trends

• IoT/Edge will continue to grow exponentially

• 125B devices by 2030 [1]

• Smart cities and infrastructure create spatio-temporal data

• Promote systems needing multi-dimensional queries

• Systems like RIAPS [2] recovering from a fault may need time-series data

• Many existent time-series databases

• InfluxDB

• BTrDb

• Some systems may need cheap/ephemeral timeseries storage

• Group of drones decide to pool memory temporarily



Goals

Desired solution should be:

• Distributed

• Lightweight

• Simple API

– Put(key,[value, timestamp])

– Get(key,[timestamp_begin, timestamp_end])



DHTs

• Distributed Hash Tables (DHTs) provide distribution, are simple 
and lightweight, and have established use in these systems.

DHT

Put(PMU_A, [220V, 12:00p])

DHT

Get(PMU_A, [11:59a,12:01p])

[[220V,12:00p]]



DHTs

SHA1“PMU_A” 1a2b3c….5e6f

ffff … f 00000 … 0

Node 1 Node 2 Node 3 Node 4



DHTs

SHA1“PMU_A” 1a2b3c….5e6f

ffff … f 00000 … 0

Node 1 Node 2 Node 3 Node 4

• Problem: Access method relies on an exact key
• Including an exact timestamp with the application key hashes the 

datapoint to a random location in the table, making retrieval difficult
• Need a way to include time in storage and lookup without making lookup 

expensive



Time-Quanta N+1Time-Quanta N

Time-Quanta

• Discretize continuous time into “time-quanta” of a constant width δ

• Timestamped samples are to be stored within that time quanta

• Time quanta are consistently addressable, providing granular access 
to datapoints

0 (s)

1δ 2δ 3δ

δ = 10s

10 20 30

0δ

UNIX Epoch

…

… (n)δ (n+1)δ (n+2)δ



Time-Factored Key: Quanta-First ID (QFI)



Time-Factored Key: Key-First ID (KFI)



Expected outcomes of Quanta-First vs Key-First

• QFI

– Samples within a measurement are 
distributed evenly throughout all 
participating nodes

– Time-series lookups can be 
parallelized

• KFI

– Samples within a measurement 
likely reside on the same nodes

– Time-series lookups likely only 
need to contact a few nodes



Experimental Results

• 18 Beaglebone Blacks, 
Ubuntu 18.04

• DHT written in Go

• A single node stores 10,000 
PMU measurements at 60 Hz

• Time-quanta width = 10s

• Measured read/write times 
for various factors of 
replication and time-series 
lengths requested



Experimental Results

• Write speed grows with 
replication, still can reach 7 
replicas while being viable 
for 60 Hz data streams

• QFI read speed vs time-series 
request length levels off as 
expected, due to parallelized 
lookups. KFI reads showed 
similar behavior. 



Moving forward

• Compare performance on the same hardware with pre-existing 
solutions

• Create better underlying storage for each time-quanta

• Spatio-temporal data applications need even higher-
dimensional lookup schemes, DHTs using scalar “distance” 
limit them to a single dimension.



Thank you!



References

1. Howell, J. (2017). Number of Connected IoT Devices Will Surge to 125 Billion by 2030, IHS Markit Says -
IHS Technology. [online] Technology.ihs.com. Available at: https://technology.ihs.com/596542/number-
of-connected-iot-devices-will-surge-to-125-billion-by-2030-ihs-markit-says [Accessed 1 May 2019].

2. S. Eisele, I. Madari, A. Dubey, and G. Karsai, “Riaps: Resilient information architecture platform for 
decentralized smart systems,” in 2017 IEEE 20th International Symposium on Real-Time Distributed 
Computing (ISORC), May 2017, pp. 125–132.


