DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES Department of Computational & Data Sciences Indian Institute of Science, Bangalore

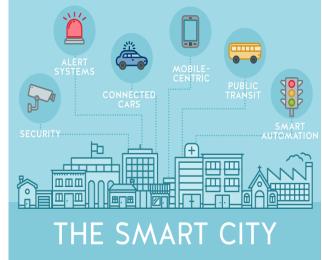
Towards Resilient Stream Processing on Clouds using Moving Target Defense

Shilpa Chaturvedi, (Member of Technical Staff, NetApp) Yogesh Simmhan IEEE ISORC Conference 2019

08-May-

19

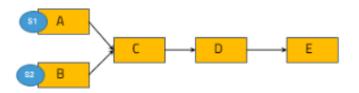
©DREAM:Lab, 201


Motivation: Internet of Things(IoT)

Billions of sensors

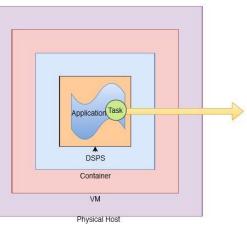
generating observation streams as time-series

- Smart Cities, Industrial IoT, Fitness devices
- Real-time analytics on incoming streaming data
- Explosion of innovative services & apps


Public services, start-ups

Stream Applications

- Applications are composed as DAGs (dataflows)
- Set of tasks as vertices and set of streams as edges
- Streaming data is ingested into applications for real time analytics


Distributed Stream Processing System

- DSPS are **Big Data** platforms tailored for scalable processing of streaming data, with low latency
- Composition & distributed execution for dataflows
- Provides support for user defined task logic
- E.g. Apache Storm, Apache Flink, Spark
 Streaming

Observation

- Stream applications are deployed on Clusters
- Shared Cloud infrastructure provides scalability but also increases vulnerabilities.
- Untrusted Environment
- Multiple Layers involved in execution => more attack
 Surfaces

Problem Statement

- Design pro-active application and platform level defense mechanisms
- Analyze performance penalties and other overheads for mechanisms
- Complement security strategies offered at the OS and other Cloud layers

DREAM:Lab

Problem Formulation

Attacks in DSPS

- Attacks classification based on entry / target points
- Attack entry points : data pattern, network, task ...
- Attack target points : VM, dataflow, tasks

Probe based attack

>Attackers probe system for fetching information

May use gained information for targeted attacks

Attacks Based on Entry Points

- Data Pattern Leaks
- False Data Attack
- VM Induced Attack
- Network Attack
- Hostile Dataflow Attack

Attacks Based on Target Points

- Data Privacy Attack
- Data Integrity Attack
- Dataflow Attack
- VM Attack
- Platform Attack

DREAM:Lab

Solution Proposed

Moving Target Defense (MTD)

- Introduces spatial-temporal variations into the system
- Variations leads to information gained by attackers to become irrelevant
- Probability based model

R. Zhuang, S. A. DeLoach, and X. Ou, "Towards a theory of moving target defense in Workshop on Moving Target Defense. ACM, 2014, C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, and J. Hughes,

Moving Cluster Approach

Three variants :

Vary the mapping of tasks to VMs
 Vary the underlying VMs in Cluster
 Hybrid of both

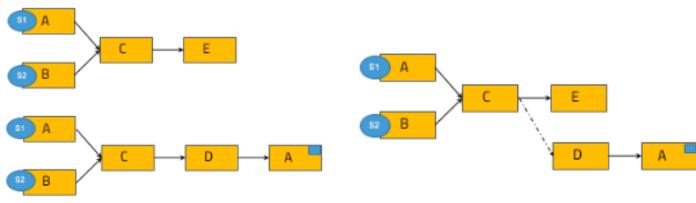
- Benefits : Decreases chances of tasks being compromised
- Cost : Redeployment of tasks / tasks migrations/ additional VMs
- Protects against: VM targeted attacks, VM Induced attacks

XOR Event Payload

- Data encryption is common for data protection
- Simple bitwise XOR of event payload
- Low compute cost
- Benefits : Data is not directly readable
- Cost : XOR operation on payload / Periodic mask updates might require pausing task
- Protects against : Data Privacy Attack

Random Broker Redirections

- Introduces a third-party event broker redirect event streams between upstream and downstream tasks
- Benefits : Masks the connectivity between tasks in the dataflow and DAG structure
- Cost : Control Signals, Latency
- Protects against : Data Pattern Attacks


Varying Dataflow Structure

- Introduce dummy task(s) between two adjacent tasks in the DAG.
- Introduce dummy events into streams
- Benefits : Conceals DAG structure
- Cost : Additional tasks instances / workers deployment
- Protects against : Dataflow targeted attack, Data Pattern attack

Stream Reuse

 Earlier work [1] replaces overlapping dataflows with a single merged dataflow to avoid redundant

Already deployed dataflow

Possible reuse of derived stream from C

08-May- [1] S. Chaturvedi, S. Tyagi, and Y. Simmhan, "Collaborative reuse of 19 streaming dataflows in iot applications," IEEE eScience Conference, 2017.

Stream Reuse (Contd.)

- Benefits : Modifies dataflow structure, resource savings
- Cost : DAG redeployment, Control Signals
- Protects against: Dataflow Targeted Attack

Varying Execution Units

- Varying the system configuration such as ports being used, number of workers, changing IP addresses
- Benefits : Prevents attacks exploiting configuration settings
- Cost : Redeployment of dataflows
- Protects against: Network Attack

N-Versions

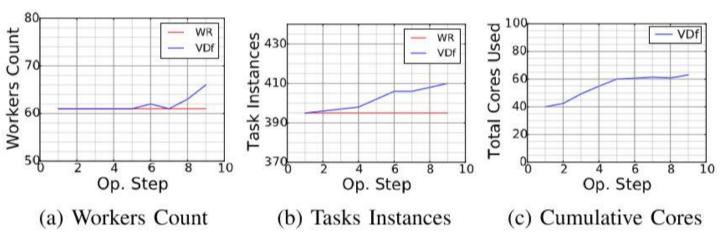
- Executing multiple (n) functionally equivalent copies of an application
- Similar to *decoy* systems.
- Allows Voting / majority approach
- Benefits : Voting approach helps in case of corrupted tasks execution
- Cost : Multiple tasks instances running
- Protects against: Dataflow Targeted Attack

DREAM:Lab

Evaluation

Experiment Setup

- Dataflows from Open Provenance Models for Workflows (OPMW) public repository
- Apache Storm v1.0.2, JRE v1.8
- Cluster with 8 nodes each having an AMD Opteron 3380 8-core CPU@2.6 GHz, 32 GB RAM, a 256 GB SSD, and GigaBit Ethernet, running CentOS v7


DREAM:Lab

Preliminary Results

WR => Without resilience Vdf => Varying df approach

Varying Dataflow Approach

Tasks instances increases by 3.8%

Conclusion

- Examined different attack entry / target points for DSPS
- Extended 7 MTD based approaches
- Proposed implementation and validation for the Apache Storm DSPS

Future Work

- We plan to empirically validate all the proposed strategies on a DSPS platform
- We plan to explore non MTD based approaches for providing resilience
- Exploring latency guarantees along with reuse

DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES Department of Computational & Data Sciences Indian Institute of Science, Bangalore

DREAM:Lab

dream-lab.in

Indian Institute of Science

Thank You!

info.shilpac@gmail.com

©DREAM:Lab, 2017 This work is licensed under a <u>Creative Commons Attribution 4.0 International</u> License

