
Constant-Time 
Approximate 
Sliding Window 
Framework with 
Error Control
Álvaro Villalba

Former Research Engineer

05/08/2019 ISORC 2019 - València



A bit about me

• PhD Student at                             
UPC - BarcelonaTECH
• Computer Architecture 

Department

• Data-Stream Processing Lead at 
NearbyComputing

• Research Engineer at BSC      
(2012 – 2018)
• Data-Centric Computing Group
• IoT and Stream Processing



Overview

• Motivation
• Stream processing + Edge Computing

• Constant-Time Scalable Sliding Window Framework – AMTA
• Scalability and Complexity

• Approximate Aggregation with Error Control – A2MTA
• Sum-like Aggregations

• Max-like Aggregations



Motivation



IoT and Big Data Convergence

• Internet of Things has become ubiquitous
• Gartner predicted that IoT will have nearly 21 billion connected devices 

by 2020

• Cisco and Ericsson expects the number of connected IoT devices to be 
50 billion by 2020

• Largest spending technology category in 2018 with $800 billion

• Large amounts of data are being generated
• Cisco predicts 14.1ZB per year by 2020



Edge Computing

• Cloud computing enables computing resources and storage 
with virtualized resources accessible to many users over the 
internet
• Standard for Big Data

• 14.1ZB per year by 2020 of data streams over the internet 

• Latency reaching data warehouses

• Edge computing brings the computation near the data sources
• Freeing bandwidth from the internet

• Reducing latencies between telemetry and actuation



Data Processing: Batches and Streams

?

Current
State

∞ …

• High throughput but high latency
• Throughput in ~100K+ TPS

• Big size of aggregation functions

Current
State

∞

• Low latency but low throughput
• Latency in milliseconds or less

• Reduced size of aggregation 
functions



Stream Aggregation: Challenge

≃

Size

∞ 
…

?

Size

∞



Stream Processing and Edge Computing

• Both paradigms prioritize low latency computation
• Immediately after data is generated

• Close to the data source

• Edge computing environment can be adverse
• Limited and shared resources

• Unreliable network

• Slow maintenance



Constant-Time 
Scalable

Sliding Window
Framework



Background: Sliding Window

• Projection from a stream that 
includes its newest element
• FIFO structure

• Operation

• Window Slide Policy (WSP)
• Usually only defines the size of 

the window

143∞ … ∞2323

Window

Result: 4

Operation: Max
WSP: Size ≤ 5  

314∞ … ?232

Window

Result: 3

∞



Background: Monoid

• Algebraic structure with the following 
properties:

• Associativity

• ∀𝑎, 𝑏, 𝑐 ∈ 𝑆: (𝑎 ∙ 𝑏) ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐)

• Neutral element

• ∀𝑒 ∈ 𝑆: ∀𝑎 ∈ 𝑆: 𝑒 ∙ 𝑎 = 𝑎 ∙ 𝑒 = 𝑎

• Closure

• ∀𝑎, 𝑏 ∈ 𝑆: 𝑎 ∙ 𝑏 ∈ 𝑆

• Monoids can be an aggregation 
Reduce phase:
• Associativity enables partial 

aggregation

• Neutral element replaces values that 
are not aggregated anymore

• Closure is obeyed by surrounding 
the Reduce with Maps, i.e.:

Mean aggregation:

Map: f 𝒙 = {𝒙, 𝟏}

Reduce: f 𝒙, 𝒚 = {𝒙𝟏 + 𝒚𝟏, 𝒙𝟐 + 𝒚𝟐}

Map: f 𝒙 =
𝒙𝟏

𝒙𝟐



Amortized Monoid Tree Aggregator
(AMTA)



Amortized Monoid Tree Aggregator

• General sliding window framework
• User provided monoid operation and slide policy

• Operation invertibility agnostic
• i.e. Sum (invertible) and Max (non-invertible)

• Distributed binary tree data structure

• Bulk eviction operation is atomic

• Amortized constant O(1) time operations



AMTA: Window Slide Policy (WSP)

• Programmatically decide which values need to be removed

• User-implemented interface
• Inputs:

• Current window result

• Eviction candidate

• Result:
• Boolean – Eviction candidate satisfies WSP

• Assumptions
• Satisfied WSP → All smaller eviction candidates satisfy the 

WSP

• Unsatisfied WSP → Only smaller eviction candidates can 
satisfy the WSP



AMTA: Data Structure

21212121

3 3 3

+ + +

6

+

Window

6

3 3 3

1 2 1 2 1 2 1 20

1

2

0 1 2 3 4 5 6 7

KVS
3 3

1 20

1

0 1

3 Ø

1 2 0

1

0 1

6 Ø 2

Le
ve

ls

Heads Tails

5

3

6 6

Eviction
Stack

Result Pair

6 6

6 6

5

3

5

3



AMTA: Basic operations

Insertion:

6 4
Result Pair

212121

3 3

+ +

Window

6 6
Result Pair

1

3

+

6

+

212121

3 3

+ +

Window

1

3

+

6

+

2

Eviction:

21212Ø

3 3

+ +

Window

5 6
Result Pair

1

3

+

6

+

2

5

3
Eviction

Stack

5

3
Eviction

Stack

3
Eviction

Stack



Approximate 
Aggregation with 

Error Control



Background: Approximate Computing

• Aggregation techniques that returns possibly inaccurate results
• Results may contain some error compared to the accurate result

• Aggregation algorithms can benefit by
• Reducing memory requirements

• Reducing power consumption

• Reducing network bandwidth

• Improving performance

• Usually based on statistical predictions

• For example:
• HyperLogLog

• Approximate distinct count



Background: Sum-like aggregations

• Sum-like aggregations have only one effective neutral element
• Results tend to constantly change

• The more extreme an input value is, the higher impact will 
have in its result

• Inverse function

• Although they all have an inverse function, it is not necessarily 
subtraction
• However subtraction is used to calculate the error

• Sum, count, average



Background: Max-like aggregations

• Multiple values have a neutral effect on the aggregation
• i.e. 𝑀𝑎𝑥 100, 99 = 100,𝑀𝑎𝑥 100, 98 = 100…

• Some value will never have an effect on the sliding window 
aggregation

• No inverse function

• Max, Min, argMax, argMin, maxCount

789∞ … ∞?

Window

Result: 8

Operation: Max

989∞ … ∞?

Window

Result: 9

Operation: Max

Never used



Approximate AMTA 
(A2MTA)



Window Bucket

• Buckets are window members 
that aggregate multiple window 
input values
• Reduced footprint

• Granularity loss
• Result error prone

• AMTA Trees don’t propagate 
changes from the newest update
• Performance improvement

• Error control requires a criteria 
for bucket sizes
• Different kinds of aggregations 

require different criteria

132∞ … ∞1123

Window

Result: 10

Operation: Count
WSP: Count > 10  

13∞ … ∞223

Window

Result: 8, Error: 2

132∞ … ∞223

Window

Result: 11



Window Bucket: Error

• A bucket generate error in two scenarios
• False positive eviction

• The last bucket evicted aggregates values that wouldn’t have been evicted 
outside the bucket

• False negative eviction
• The first bucket to be evicted aggregates values that would have been 

evicted outside the bucket

Operation: Count
WSP:  result – candidate > 10

result – Ø  = result 13∞ … ∞1223

Window Result: 8
Exact error: 2

Potential error: 2

13∞ … ∞1223

Window

Result: 11
Exact error: 1

Potential error: 2

2

Operation: Count
WSP:  result – candidate > 10

result – Ø  = 10



Sum-like histogram

• Goal: Keep the error generated by buckets inside user-defined 
boundaries
• Decide if a bucket keeps growing considering its error
• A relative error will depend on the result
• An absolute error may also depend on the result

• Not a sum aggregation: i.e. multiplicative aggregation

• Result prediction interval with a confidence level

ҧ𝑥 − 𝑡∗𝑠 1 +
1

𝑛
, ҧ𝑥 + 𝑡∗𝑠 1 +

1

𝑛

• Assuming the central limit theorem

• Absolute result error prediction
|𝑟 − 𝑀 𝑏, 𝑟 |

𝑟: predicted result, 𝑏: bucket error, 𝑀: monoid function



Max-like histogram

• Goal: Make buckets as big as possible while avoiding to 
produce any error
• Aggregate in a bucket all values that are not predicted to become an 

extreme value

• Extreme value prediction: Fisher-Tippett Theorem
• Block Maxima 

• Obtain Generalized Extreme Value distribution moments from the 
sample
• Hosking GEV Probability-Weighted Moments (PWM) estimation method

• Extract upper and lower bounds with a confidence level

• A less extreme input value than the GEV boundaries can be 
aggregated in the last bucket



Evaluation Methodology

• Data set
• A year worth of real telemetry data: 1 update/s

• Evaluate effective error and footprint from methods 
configuration parameters
• Sum-like: Parameter → Max error, Operation → Mean

• Max-like: Parameter → Block size, Operation → Max

• WSP → Month-worth updates

• Evaluate latency comparison: 
• Approximate AMTA (A2MTA)

• Amortized MTA (AMTA)



Evaluation: Sum-like Effective Error

Sum-like: Mean 



Evaluation: Max-like Effective Error

Max-like: Max



Evaluation: Footprint

Max error Footprint

10−4% 44,02%

10−3% 6,591%

10−2% 8,335 ∙ 10−1%

10−1% 9,9 ∙ 10−2%

1% 1,022 ∙ 10−2%

10% 9,854 ∙ 10−4%

Block size Footprint

10 91,33%

102 91,1%

103 95,49%

104 60,97%

105 4,394%

106 19,88%

Sum-like histogram Max-like histogram



Time Performance



Final Considerations

• A2MTA extends AMTA with approximate computing 
mechanisms

• The evaluation demonstrated that:
• General purpose stream processing approximation framework

• Result error can be controlled with prediction techniques

• Footprint is greatly reduced
• Data structure element generation is reduced in the same proportion

• Less distributed data store network traffic

• Time performance is better in most cases

• Max-like require a right block size



Thank you 

YourEmail@bsc.es


