

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EXCELENCIA SEVERO OCHOA

Constant-Time Approximate **Sliding Window Framework with Error Control** Álvaro Villalba **Former Research Engineer**

05/08/2019

ISORC 2019 - València

A bit about me

- PhD Student at **UPC - BarcelonaTECH**
 - **Computer Architecture** Department

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

NBYCOMP

NearbyComputing

- Data-Stream Processing Lead at **NearbyComputing**
- Research Engineer at BSC (2012 2018)
 - **Data-Centric Computing Group** •
 - IoT and Stream Processing

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Nacional de Supercomputación

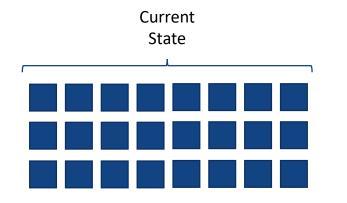
- Motivation
 - Stream processing + Edge Computing
- Constant-Time Scalable Sliding Window Framework AMTA
 - Scalability and Complexity
- Approximate Aggregation with Error Control A²MTA
 - Sum-like Aggregations
 - Max-like Aggregations

Motivation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

IoT and Big Data Convergence

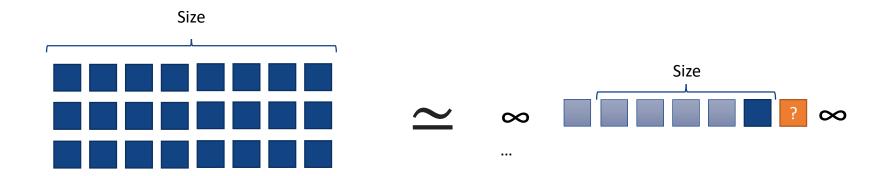
- Internet of Things has become ubiquitous
 - Gartner predicted that IoT will have nearly 21 billion connected devices by 2020
 - Cisco and Ericsson expects the number of connected IoT devices to be 50 billion by 2020
 - Largest spending technology category in 2018 with \$800 billion
- Large amounts of data are being generated
 - Cisco predicts 14.1ZB per year by 2020



Edge Computing

- Cloud computing enables computing resources and storage with virtualized resources accessible to many users over the internet
 - Standard for Big Data
 - 14.1ZB per year by 2020 of data streams over the internet
 - Latency reaching data warehouses
- Edge computing brings the computation near the data sources
 - Freeing bandwidth from the internet
 - Reducing latencies between telemetry and actuation

Data Processing: Batches and Streams

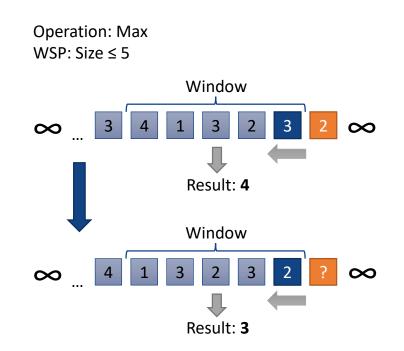

- High throughput but high latency
 - Throughput in ~100K+ TPS
- Big size of aggregation functions

- Low latency but low throughput
 - Latency in milliseconds or less
- Reduced size of aggregation functions

Stream Aggregation: Challenge

Stream Processing and Edge Computing

- Both paradigms prioritize low latency computation
 - Immediately after data is generated
 - Close to the data source
- Edge computing environment can be adverse
 - Limited and shared resources
 - Unreliable network
 - Slow maintenance


Constant-Time Scalable Sliding Window Framework

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Background: Sliding Window

- Projection from a stream that includes its newest element
 - FIFO structure
- Operation
- Window Slide Policy (WSP)
 - Usually only defines the size of the window

Background: Monoid

- Algebraic structure with the following properties:
 - Associativity
 - $\forall a, b, c \in S: (a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - Neutral element
 - $\forall e \in S: \forall a \in S: e \cdot a = a \cdot e = a$
 - Closure
 - $\forall a, b \in S: a \cdot b \in S$

- Monoids can be an aggregation Reduce phase:
 - Associativity enables partial aggregation
 - Neutral element replaces values that are not aggregated anymore
 - Closure is obeyed by surrounding the Reduce with Maps, i.e.:

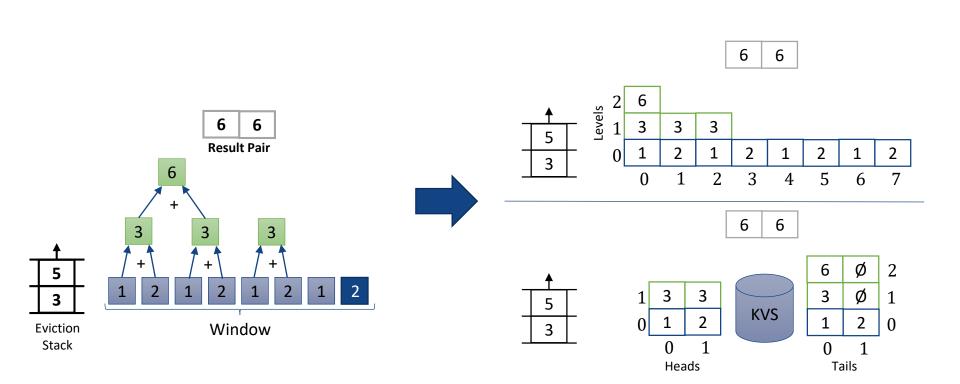
Mean aggregation:

Map:	$f(x) = \{x, 1\}$
Reduce:	$f(x, y) = \{x_1 + y_1, x_2 + y_2\}$
Map:	$f(x) = \frac{x_1}{x_2}$

Amortized Monoid Tree Aggregator (AMTA)

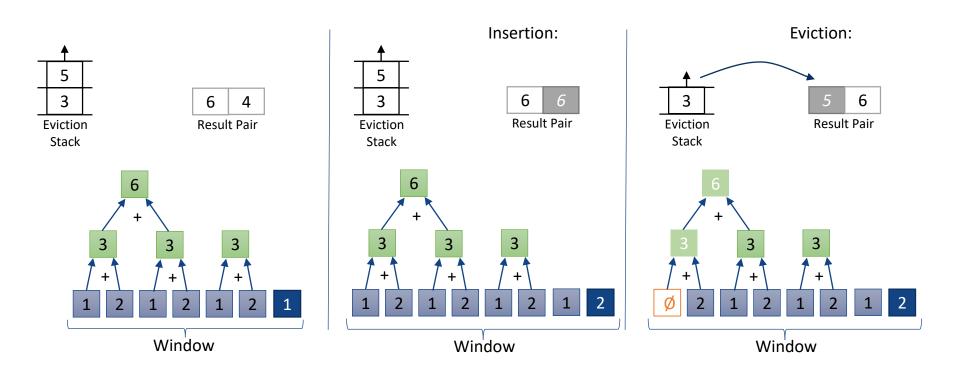
Amortized Monoid Tree Aggregator

- General sliding window framework
 - User provided monoid operation and slide policy
 - Operation invertibility agnostic
 - i.e. Sum (invertible) and Max (non-invertible)
- Distributed binary tree data structure
- Bulk eviction operation is atomic
- Amortized constant O(1) time operations



AMTA: Window Slide Policy (WSP)

- Programmatically decide which values need to be removed
- User-implemented interface
 - Inputs:
 - Current window result
 - Eviction candidate
 - Result:
 - Boolean Eviction candidate satisfies WSP
- Assumptions
 - Satisfied WSP → All smaller eviction candidates satisfy the WSP
 - Unsatisfied WSP → Only smaller eviction candidates can satisfy the WSP



AMTA: Data Structure

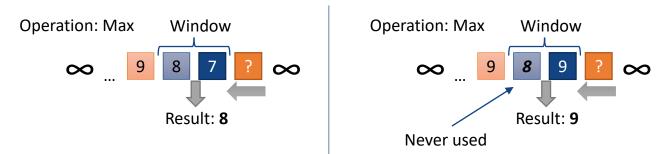
AMTA: Basic operations

Approximate Aggregation with Error Control

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Background: Approximate Computing

- Aggregation techniques that returns possibly inaccurate results
 - Results may contain some **error** compared to the accurate result
- Aggregation algorithms can benefit by
 - Reducing memory requirements
 - Reducing power consumption
 - Reducing network bandwidth
 - Improving performance
- Usually based on statistical predictions
- For example:
 - HyperLogLog
 - Approximate distinct count

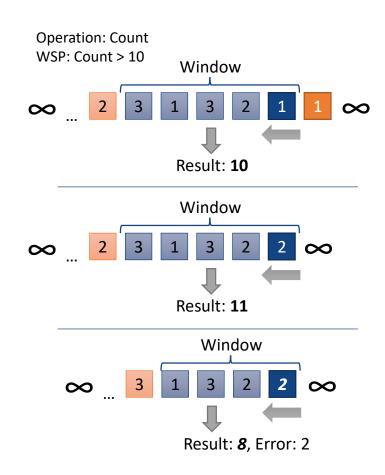

Background: Sum-like aggregations

- Sum-like aggregations have only one effective neutral element
 - Results tend to constantly change
- The more extreme an input value is, the higher impact will have in its result
- Inverse function
- Although they all have an inverse function, it is not necessarily subtraction
 - However *subtraction* is used to calculate the error
- Sum, count, average

Background: Max-like aggregations

- Multiple values have a neutral effect on the aggregation
 - i.e. $Max(100, 99) = 100, Max(100, 98) = 100 \dots$
- Some value will never have an effect on the sliding window aggregation

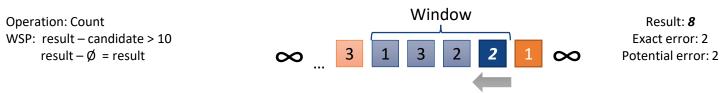
- No inverse function
- Max, Min, argMax, argMin, maxCount

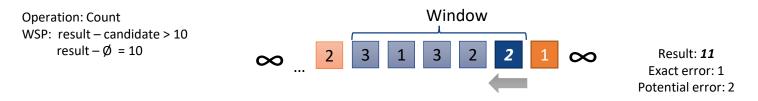


Approximate AMTA (A²MTA)

Window Bucket

- Buckets are window members that aggregate multiple window input values
 - Reduced footprint
 - Granularity loss
 - Result error prone
- AMTA Trees don't propagate changes from the newest update
 - Performance improvement
- Error control requires a criteria for bucket sizes
 - Different kinds of aggregations require different criteria




Window Bucket: Error

A bucket generate error in two scenarios

- False positive eviction
 - The last bucket evicted aggregates values that wouldn't have been evicted outside the bucket

- False negative eviction
 - The first bucket to be evicted aggregates values that would have been evicted outside the bucket

Sum-like histogram

- Goal: Keep the error generated by buckets inside user-defined boundaries
 - Decide if a bucket keeps growing considering its error
 - A relative error will depend on the result
 - An absolute error may also depend on the result
 - Not a *sum* aggregation: i.e. multiplicative aggregation
- Result prediction interval with a confidence level

$$\left(\bar{x} - t^*s\sqrt{1 + \frac{1}{n}}, \bar{x} + t^*s\sqrt{1 + \frac{1}{n}}\right)$$

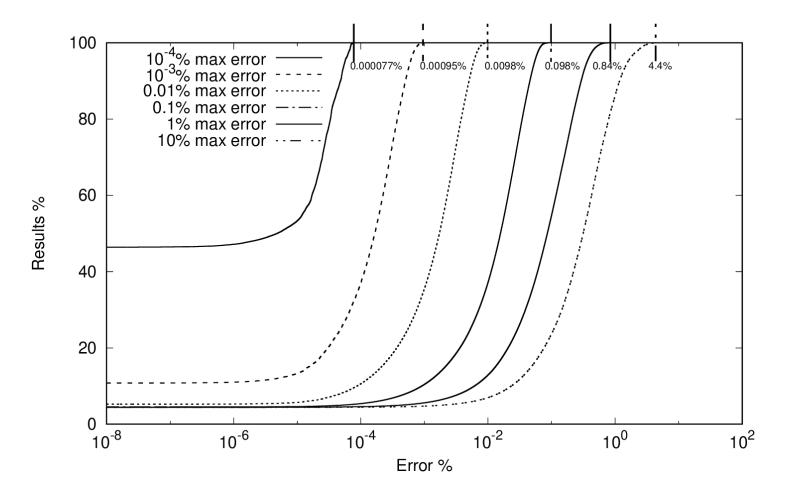
- Assuming the *central limit theorem*
- Absolute result error prediction

|r - M(b,r)|

r: predicted result, *b*: bucket error, *M*: monoid function

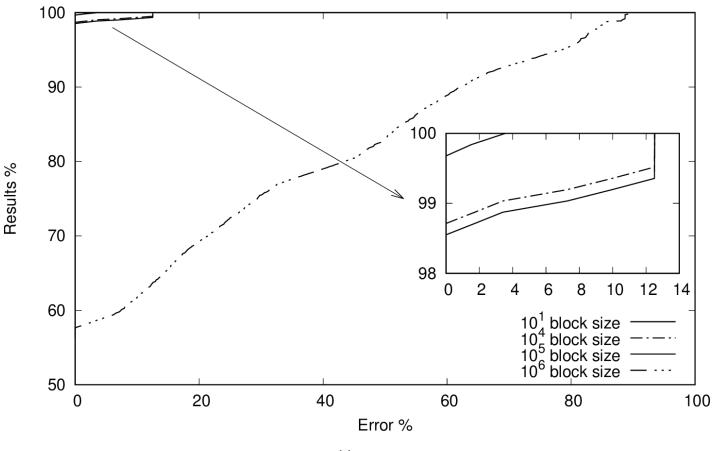
Max-like histogram

- Goal: Make buckets as big as possible while avoiding to produce any error
 - Aggregate in a bucket all values that are not predicted to become an extreme value
- Extreme value prediction: Fisher-Tippett Theorem
 - Block Maxima
 - Obtain *Generalized Extreme Value* distribution moments from the sample
 - Hosking GEV Probability-Weighted Moments (PWM) estimation method
 - Extract upper and lower bounds with a confidence level
- A less extreme input value than the GEV boundaries can be aggregated in the last bucket



Evaluation Methodology

- Data set
 - A year worth of real telemetry data: 1 update/s
- Evaluate effective error and footprint from methods configuration parameters
 - Sum-like: Parameter \rightarrow Max error, Operation \rightarrow Mean
 - Max-like: Parameter \rightarrow Block size, Operation \rightarrow Max
 - WSP \rightarrow Month-worth updates
- Evaluate latency comparison:
 - Approximate AMTA (A²MTA)
 - Amortized MTA (AMTA)


Evaluation: Sum-like Effective Error

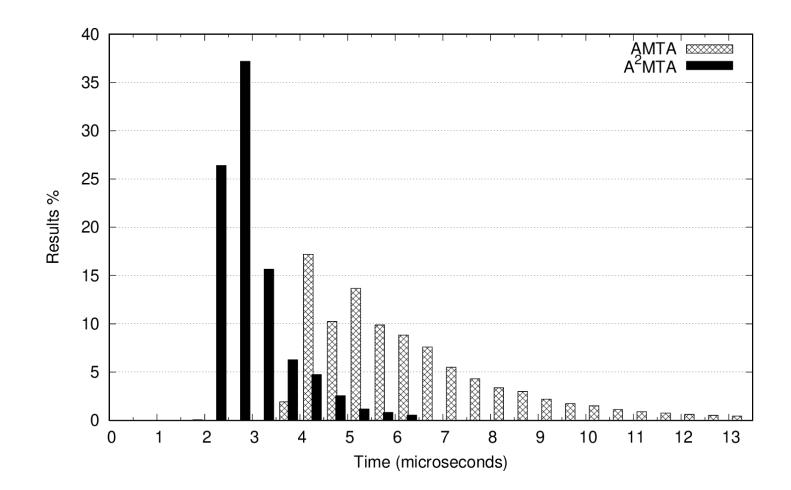
Sum-like: Mean

Evaluation: Max-like Effective Error

Max-like: Max

Evaluation: Footprint

Sum-like histogram


Max error	Footprint
$10^{-4}\%$	44,02%
$10^{-3}\%$	6,591%
10 ⁻² %	8,335 · 10 ⁻¹ %
$10^{-1}\%$	9,9 · 10 ⁻² %
1%	$1,022 \cdot 10^{-2}\%$
10%	9,854 · 10 ⁻⁴ %

Max-like histogram

Block size	Footprint
10	91,33%
10 ²	91,1%
10 ³	95,49%
104	60,97%
10 ⁵	4,394%
106	19,88%

Time Performance

Final Considerations

- A²MTA extends AMTA with approximate computing mechanisms
- The evaluation demonstrated that:
 - General purpose stream processing approximation framework
 - Result error can be controlled with prediction techniques
 - Footprint is greatly reduced
 - Data structure element generation is reduced in the same proportion
 - Less distributed data store network traffic
 - Time performance is better in most cases
- Max-like require a *right* block size

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EXCELENCIA SEVERO OCHOA

Thank you

YourEmail@bsc.es