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Introduction

Machine Learning allows you to gain insights 

and analysis from seemingly unrelated 

features

2

ML
Model

Embedded Systems can leverage this to 

provide novel functions, such as automation, 

navigation, and classification



Motivation

• Machine learning is computationally expensive and embedded systems are resource-
constrained, so it is the status quo to perform all Machine Learning applications on 
external devices. This may lead to some problems, such as:

– The runtime of the ML models are bottlenecked by the transmission time

– Losing connection can impact the device’s functionality1

• ML algorithms come in many different complexities, and embedded systems may be able to 
run some, but not all of them

• Our contribution was to find a time-efficient distribution threshold to lessen the reliance of 
embedded systems on fog servers by running some inputs locally, and offloading when 
needed
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Methodology

• A simulated sensor sent machine learning inputs to a 
component on the embedded system called the 
“Offloader”. This component determined:
– which model the input is being sent to

– whether to send the input to local or remote model

• Pre-Runtime, the WCET of each model is measured 
using a validation set. The offloader compared this 
WCET to a threshold which was measured during 
runtime. It consisted of:
– TL, the time wirelessly transfer the data 

– TF, the time execute the model on the external device
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Results and Analysis

▪ The system model was ran using both linear (1D) and
image datasets on a Multilayer Perceptron (MLP) and
a Convolutional Neural Network (CNN)

▪ The top graphs show the time taken to run every model
locally and the time taken to run the model externally. It
shows that the models using the MLP can be run locally

▪ The bottom graph shows the results of a theoretical
device running multiple models of varying complexities.
When using the proposed offloader, it shows that only
offloading inputs that bypass the threshold can reduce
the total runtime
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Conclusion

• The status quo of only performing every embedded system’s Machine Learning application on 
external devices can be improved. The transmission time is a severe bottleneck, and simple 
Machine Learning applications can bypass it by running locally

• One of the main factors which determines if a Model’s input should be offloaded is the model’s 
complexity. For example, the CNN used in this experiment had a large Dense Layer with 128 
output nodes. This made the runtime much longer, as opposed to the MLP’s dense layer of only 
32 output nodes.

• Runtime is not the only aspect to observe when running Machine Learning applications. Energy 
consumption and temperature should also be looked at.

• The Machine Learning models themselves could also be partitioned, instead of offloading the 
functionality of the entire models2
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