
On the Design of Fault-Tolerance in a

Decentralized

Software Platform for Power Systems

Purboday Ghosh, Scott Eisele, Abhishek Dubey, Mary Metelko,

Istvan Madari, Peter Volgyesi, Gabor Karsai

Institute for Software-Integrated Systems, Vanderbilt University

Supported by DOE ARPA-E under award DE-AR0000666

Outline

2

 Software for Smart Grid

 RIAPS fundamentals

 Fault management architecture

 Example: Transactive Energy App

 Summary

The Energy Revolution: Big Picture

From centralized to decentralized

and distributed energy systems

Changing Generation Mix

Transactive EnergyElectric Vehicles

Decentralization

Needs: Distributed ‘grid intelligence’ for

• Monitoring + control locally and on multiple

levels of abstraction

• Transactions among peers

• Real-time analytics

• Autonomous and resilient operation

Gas station

Factory

Airport

Company

Fire station

Market

Police

station

Transmission substation

Power plant
Distribution substation

Remote control switch

Smart campus

Distribution operating center

Wind generator

Storage

Distance relay

Distance relay

Sectionalizer

Overcurrent relay

Overcurrent relay

Recloser

4 way switch

The control picture has not changed

Communication Network

Distribution:

Centralized SCADA

system managed by the

utility company

Gas station

Factory

Airport

Company

Fire station

Market

Police

station

Transmission substation

Power plant
Distribution substation

Remote control switch

Smart campus

Distribution operating center

Wind generator

Storage

Distance relay

Distance relay

Sectionalizer

Overcurrent relay

Overcurrent relay

Recloser

4 way switch

The control picture has not changed

Communication Network

Problems
•Distributed Control

•Network latency

•Lack of interoperability

•Robust/resilient software

•Cyber-security

• Integration challenges

• …

Q: IS THERE A BETTER WAY TO WRITE SOFTWARE FOR THIS?

A: YES, BUT WE NEED BETTER SOFTWARE INFRASTRUCTURE AND TOOLS.

RIAPS Vision

Showing a transmission system, but it applies to distribution systems, microgrids, etc.

RIAPS Details

The Software Platform

RIAPS Applications

Actors and Components

8

Applications consist of ‘actors’: distributed

processes deployed on a network, serve as

containers for ‘components’. Actors are

managed by ‘deployment managers’ and

supported by a distributed service

discovery system.

Components are (mostly) single-

threaded event/time-triggered objects

that interact with other components

via messages. Several interaction

patterns are supported.

RIAPS Platform services

9

 Deployment: installs and manages the
execution of application actors

 Discovery: service registry, distributed on
all nodes, uses a distributed hash-table in
a peer-to-peer fashion

 Time synchronization: maintains a
synchronized time-base across the nodes
of the network, uses GPS (or NTP) as
time base and IEEE-1588 for clock
distribution

 Device interfaces: special components
that manages specific I/O devices,
isolating device protocol details from the
application components (e.g. Modbus on a
serial port)

 Control node: special node for managing
all RIAPS nodes

RIAPS

Resilience

10

Definition of ‘Resilience’ from Webster:

 Capable of withstanding shock without permanent deformation or
rupture

 Tending to recover from or adjust easily to misfortune or change

Sources of ‘misfortune‘:

 Hardware:computing node, communication network,...

 Kernel: internal fault or system call failure,...

 Actor: framework code (including messaging layer)...

 Platform service: service crash, invalid behavior,...

 Application component faults: implementation flaw, resource
exhaustion, security violation...

RIAPS

Fault management

11

 Assumption

 Faults can happen anywhere: application, software

framework, hardware, network

 Goal

 RIAPS developers shall be able to develop apps that

can recover from faults anywhere in the system.

 Use case

 An application component hosted on a remote host

stops permanently, the rest of the application detects

this and ‘fails over’ to another, healthy component

instead.

 Principle

 The platform provides the mechanics, but app-specific

behavior must be supplied by the app developer

Benefit: Complex mechanisms that allow the implementation of resilient apps.

RIAPS

Resource management approach

 Resource: memory, CPU cycles, file space, network bandwidth,
(access to) I/O devices

 Goal: to protect the ‘system’ from the over-utilization of resources
by faulty (or malevolent) applications

 Use case:
 Runaway, less important application monopolizes the CPU and prevents

critical applications from doing their work

 Solution: model-based quota system, enforced by framework
 Quota for application file space, CPU, network, and memory + response to

quota violation – captured in the application model.

 Run-time framework sets and enforces the quotas (relying on Linux
capabilities)

 When quota violation is detected, application actor can (1) ignore it, (2)
restart, (3) shutdown.

 Detection happens on the level of actors

 App developer can provide a ‘quota violation handler’

 If actor ignores violation, it will be eventually terminated

RIAPS

Resource Models

 Resource requirements fall into 4 categories:

 CPU requirements: a percentage of CPU time (utilization) over
a given interval. If interval is missing, it defaults to 1 sec
cpu 25% over 10 s;

 Memory requirement: maximum total memory the actor is
expected to use

mem 512 KB;

 Storage requirement: maximum file space the actor is
expected to allocate on the file storage medium

space 1024 KB;

 Network requirements: amount of data expected from and to
the component through the network:
net rate 10 kbps ceil 12 kbps burst 1.2k;

RIAPS

Resource management implementation

14

 Architecture model specifies resource quotas

 Run-time system enforces quotas

 Uses Linux mechanisms

 Application component is notified

 Component can take remedial action

 Deployment manager is notified

 Manager can terminate application actor

RIAPS

Fault management model

15

Summary of results

from analysis

RIAPS

Fault management – Implementation (1)

16

Fault

location

Error Detection Recovery Mitigation Tools

App flaw actor termination deplo detects

via netlink socket

(warm) restart actor call term handler; notify peers libnl - lmdb as

program database

unhandled exception framework catches all

exceptions if repeated, (warm) restart

call component fault handler;

notify peers about restart

exceptions

resource violation framework detects

if restarted 

call app resource handler

notify peers

- CPU utilization soft: cgroups cpu tune scheduler cgroups

hard: process monitor if repeated, restart notify actor/ call handler psutil mon +

SIGXCPU

- Memory

utilization

soft: cgroups memory (low) notify actor/ call handler cgroups + SIGUSR1

hard: cgroups memory

(critical)

terminate, restart call termination handler cgroups + SIGKILL

- Space

utilization

soft: notification via netlink notify actor/ call handler pyroute2 + quota

hard: notification via netlink terminate, restart call termination handler pyroute2 + quota

- Network

utilization

via packet stats

if repeated, (warm) restart

notify actor/ call handler

notify peers about restart

nethogs

- Deadline

violation

time method calls if repeated, restart notify component / call handler timer on method calls

app freeze check for thread stopped terminate, restart actor notify component;

call cleanup handler; notify

peers restart

threads

app runaway check for method non-

terminating

terminate, restart actor notify component;

call cleanup handler; notify

peers about restart

watchdog on method

calls

RIAPS

Fault management – Implementation (2)

17

Fault

location

Error Detection Recovery Mitigation Tools

RIAPS flaw internal actor

exception

framework catches all

exception

terminate with error;

warm restart

call term handler; exceptions

disco stop / exception deplo detects deplo (warm) restarts

disco

if services OK, upon restart

restore local service

registrations

libnl + netlink

deplo stop systemd detects restart deplo (cold) restart disco ; restart

local apps

Linux

deplo loses ctrl

contact

deplo detects NIC down -> wait for

NIC up; keep trying

Linux

System (OS) service stop systemd detects systemd restarts clean (cold) state Linux

kernel panic kernel watchdog reboot/restart deplo restarts last active

actors

External I/O I/O freeze device actor detects reset/start HW; device -

specific

inform client component watchdog on

method calls

I/O fault device actor detects reset/start HW; device -

specific

log, inform client

component

custom check

HW CPU HW fault OS crash reset/reboot systemd  deplo Linux

Mem fault OS crash reboot systemd  deplo Linux

SSD fault filesystem error reboot/fsck systemd  deplo Linux

Network NIC disconnect NIC down notify actors/call handler pyroute2 + libnl

RIAPS disconnect framework detects

RIAPS p2p loss

keep trying to reconnect notify actors/call handler ;

recv ops should err with

timeout, to be handled by

app

DDoS deplo monitors p2p

network performance

notify actors/call handler netfilter + iptables

RIAPS Fault Management

Interaction patterns – notional example

18

Two nodes: A and B, with their own Deployment Managers (DeploA, DeploB), discovery

service instances (DiscoA, DiscoB), and application actors (ActorA, ActorB). Actors of the same

app form a peer-to-peer network, whose members are notified upon membership changes.

Experimental evaluation

19

 Transactive Energy application:

 Prosumers ‘trade energy’ with the help of a ‘market’. Results

(trades) are recorded in a distributed ledger

Experimental evaluation

20

 Experiment 1: Network failure
 Node gets disconnected, peers get notified – when node is reconnected

peers are notified again

The horizontal axis is the elapsed time in seconds. The values shown from
bottom to top are: (a) time to notify peer of disconnect, (b) time to notify
peer of reconnect, (c) time for actors on a disconnected node to be
notified.

Experimental evaluation

21

 Experiment 2: Platform failure
 Deployment service fails

The horizontal axis is the elapsed time in seconds. From bottom to top the values
are: (a) time to notify local actors, (b) time to terminate actors owned by previous
deplo, (c) time to clean up other actors owned by previous deplo, (d) time until
actors are fully recovered. (e) is the time until the peers know the node has left, and
(f) is when the nodes know the peer has rejoined.

Experimental evaluation

22

 Experiment 3: Resource violations

 CPU utilization limit, memory limit, disk space limits are exceeded

The horizontal axis is the elapsed time in milliseconds. The values
indicate the time interval between detection and invocation of the
associated handler for (a) Disk Usage limit, (b) Memory Usage limit and
(c) CPU limit

Summary and conclusions

23

 RIAPS: A software platform for building distributed real-time
embedded apps for the Smart Grid

 Provides a number of services to build resilient apps, including
resource and fault management

 Design principles:
 Resource management: enforce the quotas, but notify app

 Fault management: detect and, to the extend possible, mitigate faults,
but inform the app

 Websites:
 https://riaps.isis.vanderbilt.edu/ - Project

 https://github.com/RIAPS - Code base

 https://riaps.github.io/ - Documents

 https://www.youtube.com/channel/UCwfT8KeF-8M7GKhHS0muawg
-Youtube channel

https://riaps.isis.vanderbilt.edu/
https://github.com/RIAPS
https://riaps.github.io/
https://www.youtube.com/channel/UCwfT8KeF-8M7GKhHS0muawg

