INTEGRATED SYSTEMS

On the Design of Fault-Tolerance in a
Decentralized
Software Platform for Power Systems

Purboday Ghosh, Scott Eisele, Abhishek Dubey, Mary Metelko,
Istvan Madari, Peter Volgyesi, Gabor Karsai
Institute for Software-Integrated Systems, Vanderbilt University

Supported by DOE ARPA-E under award DE-AR0000666

Outline

» Software for Smart Grid

» RIAPS fundamentals

» Fault management architecture
» Example: Transactive Energy App

» Summary

The Energy Revolution: Big Picture

From centralized to decentralized
and distributed energy systems

Changing Generation Mix

Electric Vehicles Transactive Energy

Decentralization

Needs: Distributed ‘grid intelligence’ for

* Monitoring + control locally and on multiple
levels of abstraction

* Transactions among peers

* Real-time analytics

* Autonomous and resilient operation

The control picture has not changed

tion Network

ICa

L3

Commun

D)
<
)
< 3
Dd
Mnue
S
c
.mwm
5 AN
Q9 B &
SES
Qv -

Power plant

utility company

The control picture has not changed

—_——

—

Comrgunication Network

(@) . I

4 4 O T _——— Y |

' ‘ 1 1

! 1 1 1 1

| 1] 1 1 I

| 1 1 1 1 1
1 1 1 1

: : : I | |

: 1 1 1 : *
| 1 1 1 1
. : : i '
1 1 1 1 i
! 1
. | : i '
|
: | | I
1 1 1 1 :
¥ v H |
|
|

¥ Problems
*Distributed Control

vvvvvv
nnnnnn

*Network latency

*Lack of interoperability
*Robust/resilient software
*Cyber-security
*Integration challenges

MMMMMM

Q:ISTHERE A BETTERWAY TO WRITE SOFTWARE FORTHIS?
A:YES,BUT WE NEED BETTER SOFTWARE INFRASTRUCTURE AND TOOLS.

RIAPS Vision

Comrrgunication Network

O O
: Example Power System:
IEEE 30 bus system

29

) @ ;
CLOVERDALE

27 28 RIAPS Network
O O Computing Platform 1/f
O Sensors tor

33KV. I132KV.

Control Room

Network I

RIAP
Computing Platform /¥
RIAPS Network Sensors ACLUBLOrS
| Computing Platform 1/f
| ' Sensors Actuators ' :
! H 0 \
! | 14 '
H ' ® !
| ' 5
: B 21 3
RIAPS Network \
Computing Platform 1/F i
Sensors Actustors ' RIAPS Network
! Computing Platform 1/f
] LRy Actuators
Q ————— 3 5
O Q 0
0

REUSENS

- RIAPS Node:
(© GENERATORS
7 © SYNCHRONOUS RIAPS Network

2 $32¢°CLAYTOR

RAPs (Network . 14 Computing Platform I/F
Computing Platform (/5 BB SEEEEtlitt
O Sensors EUSACIUAIOTS Sensors Actuators

Showing a transmission system, but it applies to distribution systems, microgrids, etc.

RIAPS Details
The Software Platform

Applications

Remedial Action Microgrid State Data Energy Distributed
Scheme Management Estimation Analytics Management SCADA

Component Framework Platform Managers

Component Interactions Lifecycle Management Application Manager Coordination Manager

Component Messaging Initialize, Start, Stop, Application Management and Distributed Coordination Service
Checkpoint, Destroy Deployment Service

Component Scheduling Language Run-time Discovery Manager Time Manager

Event/Time-triggered C/C++, etc. Broker Service Time Synchronization Service

Resource Management Security Resource Manager Device Manager

Resource Management Service Access Control Resource Management Service Device Interface Service
Secure Communications

Fault Management Sacure Information Elows Fault Manager Security Manager

Fault Management Service Fault Management Service Security Management Service

Logging Persistence Log Manager Persistence Manager

Logging Service Persistence Service Logging Service Persistence Service

OS Kernel

Hardware Platform

Device Interfaces
(Sensors/Actuators/Communications/GPS/...)

Network Interface(s) Storage

RIAPS Applications
Actors and Components

Component communication/Interaction

Development Machine

Deployment control

RIAPS control node

Deployment/Execution control

Dhseovery/Registration

{\, —_— — JL — L—

- — L .=

| — D]a‘-mver_if;l Dhscovery
Actor

| W RIAPS node

\ Application

Components are (mostly) single-

threaded event/time-triggered objects
that interact with other components

via messages. Several interaction

patterns are supported.

uul

Rep

Applications consist of ‘actors’: distributed
processes deployed on a network, serve as
containers for ‘components’. Actors are
managed by ‘deployment managers’ and

supported by a distributed service

discovery system.

Parameters

States

Message queue

Management

000

Operations

@ Current

Operation m

Component

RIAPS Platform services

Applications
. Remedial Action Microgrid State Data Ener; Distributed
} D e P I Oym e nt: I n Stal I S a n d m an ages th e Scheme Managesment Estimation Analytics Managesr:ent SCADA
eXGCUtion Of application aCtO rs Component Framework . Platform Managers
» Discovery: service registry, distributed on —

Event/Time-triggered

all nodes, uses a distributed hash-table in
a peer-to-peer fashion

» Time synchronization: maintains a ———
synchronized time-base across the nodes Hordware Plarorm
of the network, uses GPS (or NTP) as Semsors/Acum o onsfopsy.) | NetworkIneraels) Storage
time base and IEEE- 1588 for clock

distribution

» Device interfaces: special components
that manages specific I/O devices,

isolating device protocol details from the
application components (e.g. Modbus on a N I
serial Port) o RIAPS node |
e ™ ~
» Control node: special node for managing deplo % dio
all RIAPS nodes e
B

RIAPS
Resilience

Definition of ‘Resilience’ from VWebster:

Capable of withstanding shock without permanent deformation or
rupture

Tending to recover from or adjust easily to misfortune or change

Sources of ‘misfortune’:
Hardware: computing node, communication networlk,...
Kernel: internal fault or system call failure,...
Actor: framework code (including messaging layer)...
Platform service: service crash, invalid behavior,...

Application component faults: implementation flaw, resource
exhaustion, security violation...

RIAPS
Fault management

» Assumption cmﬁal Faut _-I.| oo | | raiee |
Faults can happen anywhere: application, software (] et |
framework, hardware, network Operator

» Goal

RIAPS developers shall be able to develop apps that
can recover from faults anywhere in the system.

» Use case

An application component hosted on a remote host
stops permanently, the rest of the application detects

this and ‘fails over’ to another, healthy component
instead.

» Principle

The platform provides the mechanics, but app-specific
behavior must be supplied by the app developer

Benefit: Complex mechanisms that allow the implementation of resilient apps.

RIAPS
Resource management approach

>

Resource: memory, CPU cycles, file space, network bandwidth,
(access to) I/O devices

Goal: to protect the ‘system’ from the over-utilization of resources
by faulty (or malevolent) applications

Use case:

Runaway, less important application monopolizes the CPU and prevents
critical applications from doing their work

Solution: model-based quota system, enforced by framework

Quota for application file space, CPU, network, and memory + response to
quota violation — captured in the application model.
Run-time framework sets and enforces the quotas (relying on Linux
capabilities)
When quota violation is detected, application actor can (1) ignore it, (2)
restart, (3) shutdown.

Detection happens on the level of actors

App developer can provide a ‘quota violation handler’

If actor ignores violation, it will be eventually terminated

RIAPS
Resource Models

» Resource requirements fall into 4 categories:

CPU requirements: a percentage of CPU time (utilization) over
a given interval. If interval is missing, it defaults to | sec

cpu 25% over 10 s;

Memory requirement: maximum total memory the actor is
expected to use

mem 512 KBj;

Storage requirement: maximum file space the actor is
expected to allocate on the file storage medium

space 1024 KB;

Network requirements: amount of data expected from and to
the component through the network:

net rate 10 kbps ceil 12 kbps burst 1.2k;

RIAPS
Resource management implementation

» Architecture model specifies resource quotas

» Run-time system enforces quotas

Uses Linux mechanisms
» Application component is notified
Component can take remedial action

» Deployment manager is notified

Manager can terminate application actor

actor LimitActor |
uses |

cpu max 10 % over 1;//Hard limit, no 'max’ is soft]

mem 200 mb; Mem limit

space 10 mb; File space limit

net rate 10 kbps ceil 12 kbps burst 1.2 k; Netlimits

}

RIAPS
Fault management model

Dimension

Description

Detected by

What do-
main does
the fault
oceur in?

Phvsical Permanent

Fail-stop {malfunction of node
or cluster network)

Hardware walchdog

and Platform services

Fail-stop other [malfunction

of attached device, sensor.

ete.)

Device component

Network link failure

Fault manager module
in deplovment manager

Blabbering idiot [runaway

publisher]

Actor/Kernel via net-
work resource limits

Transient

Temporary network discon-

nection

Fault modd-

ule in deplovment man-

l[]':LJIil.?_'.l'J'

ager (network connec-
tion monitor)

Heszource exhaustion

Kernel (using resource
limits)

Cvber Permanent

Fail-stop {actor stop due fo
e.g. s=egmentation fanlis]

Fault
process connector from

manager, using

kernel)

Reszource violation

Kernel, using resource
limits

Deadline or response-time vi-

olation

Component framework

logic

Component-level anomaly

Component framework

logic

Hun-time

Bvzaniine failures

Not handled

When does
the fault
oceur?

Design-fime

Happens while designing the|
system

Design tools: model-

based tools, debuggers

Deplovment-time

Happens while deployving the

svstem

Deplovment manager
and RIAPS Controller

Human-cansed

Unintentional mistake

Design tools and fanli
management architec-

ture

Summary of results
from analysis

RIAPS
Fault management — Implementation (1)

location

App flaw actor termination deplo detects (warm) restart actor call term handler; notify peers libnl - Imdb as
via netlink socket program database
unhandled exception framework catches all call component fault handler; exceptions
exceptions if repeated, (warm) restart notify peers about restart
resource violation framework detects call app resource handler
if restarted 2> notify peers
- CPU utilization soft: cgroups cpu tune scheduler cgroups
hard: process monitor if repeated, restart notify actor/ call handler psutil mon +
SIGXCPU
- Memory soft: cgroups memory (low) notify actor/ call handler cgroups + SIGUSRI
utilization hard: cgroups memory terminate, restart call termination handler cgroups + SIGKILL
(critical)
- Space soft: notification via netlink notify actor/ call handler pyroute2 + quota
utilization hard: notification via netlink terminate, restart call termination handler pyroute2 + quota
- Network via packet stats notify actor/ call handler nethogs
utilization if repeated, (warm) restart notify peers about restart
- Deadline time method calls if repeated, restart notify component / call handler timer on method calls
violation
app freeze check for thread stopped terminate, restart actor notify component; threads

call cleanup handler; notify
peers restart
app runaway check for method non- terminate, restart actor notify component; watchdog on method
terminating call cleanup handler; notify calls
peers about restart

RIAPS
Fault management — Implementation (2)

location

RIAPS flaw

System (OS)

External I/O

HW

Network

internal actor
exception

disco stop / exception

deplo stop

deplo loses ctrl
contact
service stop
kernel panic

/O freeze

1/O fault

CPU HWV fault
Mem fault
SSD fault

NIC disconnect
RIAPS disconnect

DDoS

framework catches all

exception
deplo detects

systemd detects

deplo detects

systemd detects
kernel watchdog

device actor detects
device actor detects

OS crash

OS crash
filesystem error
NIC down
framework detects
RIAPS p2p loss

deplo monitors p2p

network performance

terminate with error;
warm restart

deplo (warm) restarts
disco

restart deplo

NIC down -> wait for
NIC up; keep trying
systemd restarts
reboot/restart

reset/start HWV; device -
specific

reset/start HWV; device -
specific

reset/reboot

reboot

reboot/fsck

keep trying to reconnect

call term handler;

exceptions

if services OK, upon restart libnl + netlink

restore local service
registrations

(cold) restart disco ; restart Linux

local apps

clean (cold) state

deplo restarts last active
actors

inform client component

log, inform client
component

systemd = deplo
systemd = deplo
systemd = deplo

notify actors/call handler
notify actors/call handler ;
recv ops should err with
timeout, to be handled by

app
notify actors/call handler

Linux

Linux

watchdog on
method calls
custom check

Linux
Linux
Linux
pyroute2 + libnl

netfilter + iptables

RIAPS Fault Management
Interaction patterns — notional example

SystemdA | (DiscoA] (FMA] [DeploA| [(ActorA] (Cul] (DiscoB) (FMB DeploB | [ActorB]

Fault
(_______________________
Start
Start
Setup
—
Stpep
Terminate
-— - - .
NoUpdate PeerExpired
_______________________________________ >
PeerExit
—
handlePeerftateChange
Start >
N Join
Setup
addllctor
addActor ~
-— .
addlfeer
addActor addPeer addPeer

Two nodes: A and B, with their own Deployment Managers (DeploA, DeploB), discovery

service instances (DiscoA, DiscoB), and application actors (ActorA, ActorB). Actors of the same
app form a peer-to-peer network, whose members are notified upon membership changes.

18

Experimental evaluation

» Transactive Energy application:

Prosumers ‘trade energy’ with the help of a ‘market’. Results
(trades) are recorded in a distributed ledger

l 6} exchange i
[Producer] < 5) notify [DSO] 5) netify » [Consumer]
1y Post Offers 4y Finalize |1} Post Offers

L v |

Distributed Ledger [External to RIAPS]

(check offer and solution correctness, select best solution)

N
Post Solution

A

3) Post Solution
4 S

4,
Solverl .J Solver2 4 | Solvers... l-:

2) Offer Notify 3) 2) Offer Notify

2) Offer Notify

Experimental evaluation

» Experiment |: Network failure

Node gets disconnected, peers get notified — when node is reconnected
peers are notified again

© - — —
) A H x .
@) | x .
| | | |
0 5 10 15

time[s]

The horizontal axis is the elapsed time in seconds.The values shown from
bottom to top are: (a) time to notify peer of disconnect, (b) time to notify

peer of reconnect, (c) time for actors on a disconnected node to be
notified.

20

Experimental evaluation

» Experiment 2: Platform failure
Deployment service fails

M| Sa— I
©F =5 i
@ | = _—
©F - -
® | i
@ | | | i | " | | | |_

0 5 10 15 20 25 30 35

time[s]

The horizontal axis is the elapsed time in seconds. From bottom to top the values
are: (a) time to notify local actors, (b) time to terminate actors owned by previous
deplo, (c) time to clean up other actors owned by previous deplo, (d) time until
actors are fully recovered. (e) is the time until the peers know the node has left, and
(f) is when the nodes know the peer has rejoined.

21

Experimental evaluation

» Experiment 3: Resource violations

CPU utilization limit, memory limit, disk space limits are exceeded

(© - 1]

(b) - gl iy
(@) - %x| il

| | | | | | | |
0 10 20 30 40 50 60 70 80 90

time[ms]

The horizontal axis is the elapsed time in milliseconds. The values
indicate the time interval between detection and invocation of the

associated handler for (a) Disk Usage limit, (b) Memory Usage limit and
(c) CPU limit

22

Summary and conclusions

» RIAPS: A software platform for building distributed real-time
embedded apps for the Smart Grid

» Provides a number of services to build resilient apps, including
resource and fault management
» Design principles:
Resource management: enforce the quotas, but notify app

Fault management: detect and, to the extend possible, mitigate faults,
but inform the app

» Websites:
- Project
- Code base
- Documents

- Youtube channel

23

https://riaps.isis.vanderbilt.edu/
https://github.com/RIAPS
https://riaps.github.io/
https://www.youtube.com/channel/UCwfT8KeF-8M7GKhHS0muawg

