

On the adequacy of SDN and TSN for Industry 4.0

Luis Silva, **Paulo Pedreiras**, Pedro Fonseca, Luis Almeida UA/FEUP/IT/Cister

Valencia, May 7-9 2019

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA This work is funded by FCT/MEC through national funds and when applicable co funded by FEDER – PT2020 partnership agreement under the project UID/EEA/50008/2013.

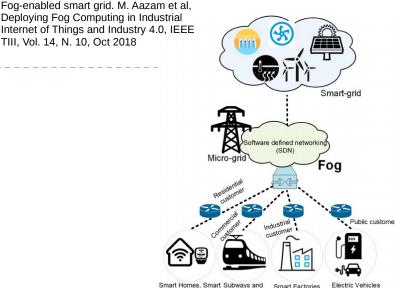

Outlook

Industry 4.0 and Smart Factories

- Concepts and requirements
- Focus on communications
- Background on SDN
- Background on TSN
- Qualitative comparison
- Conclusions

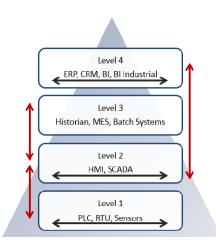
Towards Industry 4.0

Smart Factory Plant Example



*Source: "Industry 4.0 How to navigate digitization of the manufacturing sector", McKinsey Digital, 2015

Industry 4.0


Network perspective

- Heterogeneous technologies
 - Conventional sensors/actuators, Machine vision, ERP, ...
- Heterogeneous requirements
 - Bandwidth from bps to Mbps; Hard/Soft/ and Non Real-Time traffic
 - Mixed criticality
- Heterogeneous computing architectures
 - Distributed, Centralized, Fog, Edge, ...
- Dynamic requirements
 - Variable number of nodes, variable configurations, ...
- Integration
 - Full visibility of operations, global management tools

TIII, Vol. 14, N. 10, Oct 2018

European Union Agency For Network And Information Security, 2016

Networking technologies

Industrial technologies/protocols for the lower layers

Combined with IP based protocols at the higher layers

LEVEL 1

BACnet Beckoff EtherCat CANopen Crimson v3 (Redlion) DeviceNet GE-SRTP IEEE 802.15.4 + ZigBee (ECC) ISA/IEC 62443 (series IACS) ISA SP100 MELSEC-Q (Mitsubishi Electric) MODBUS Niagara Fox (Tridium) **Omron Fins** PCWorx ProConOs Profibus Profinet Sercos II S7 Communication (Siemens) WIMAX

LEVEL 2

6LoWPAN CC-Link DNP3 DNS/DNSSEC FTE (Fault Tolerant Ethernet) HART-IP IEC 60870-5-101/104 IPv4/IPv6 ISA/IEC 62443 (series IACS) OPC NTP SOAP TCP/IP

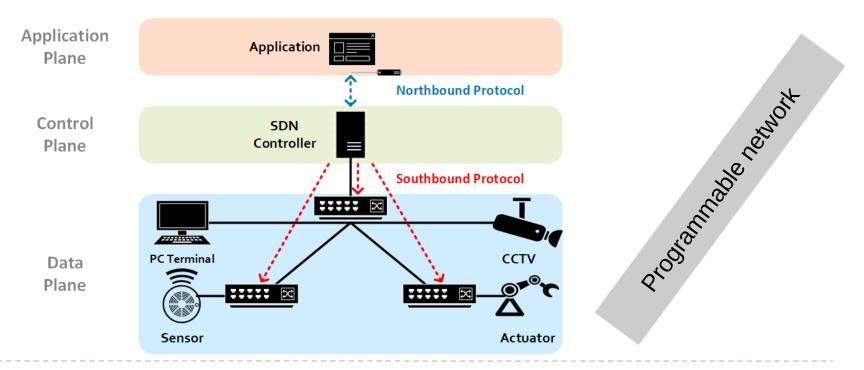
LEVEL 3

CC-link DDE GE-SRTP HSCP ICCP (IEC 60870-6) IEC 61850 ISA/IEC 62443 (series IACS) MODBUS NTP Profinet SUITELINK Tase-2 TCP/IP

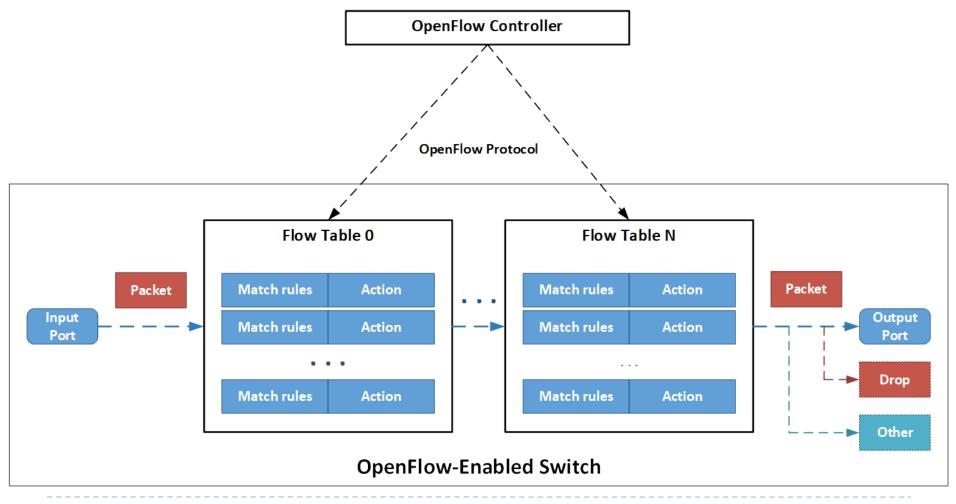
LEVEL 4

DCOM DDE FTP/SFTP GE-SRTP IPv4/IPv6 OPC TCP/IP Wi-Fi (IEEE 802.11i)

> European Union Agency For Network And Information Security, 2016


5

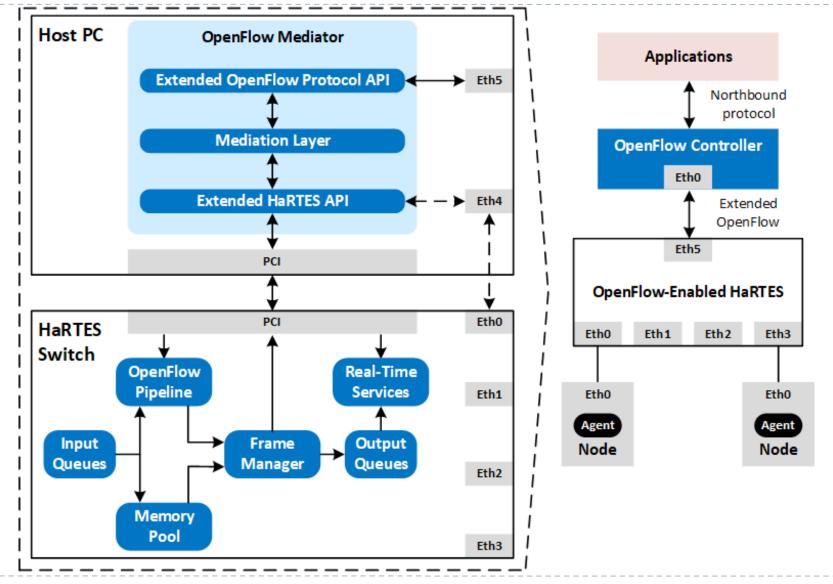
Networking for I4.0


- Two candidates for Industry 4.0 communications infrastructure
 - Software Defined Networking (SDN)
 - Origins on datacenters
 - Disruptive paradigm
 - Network programmability
 - IEEE Time Sensitive Networking (TSN)
 - Evolutionary approach (roots on AVB)
 - Extends existing IEEE standards
 - Support to automation-class traffic

OpenFlow Protocol

- De facto SDN standard
- Southbound interface
- Deployed in campus networks, datacenter networks, ...

How does OpenFlow work?


- Suitable for management of complex environments
 - Large networks, heterogeneous requirements
 - Programmability allows an unprecedented level of flexibility
- ► However:
 - Real time communications severely limited
 - Time-triggered traffic not supported,
 - Quality-of-Service (QoS) mechanisms/metrics unsuitable for strict timeliness guarantees

- Real time on SDN/OpenFlow
 - Performance evaluations
 - Highlight the benefits of the flexibility (arbitrary topologies, custom protocols, reconfigurations)
 - Highlight the real-time performance limitations

- Extensions

- Enhancements to the queues management
- Overlay protocols (TDMA, FTT)
- Integration with deterministic layer 2 protocols (PROFINET, HaRTES)
 - Bring real-time services to OpenFlow

Example: Integration with HaRTES

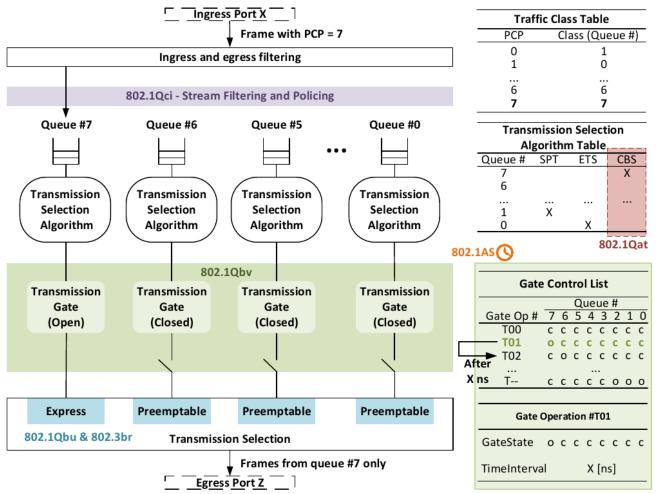
IEEE Time-Sensitive Networking

Set of standards developed by the IEEE 802.1 time-sensitive networking task group



- Successor of Audio-Video Bridging task group (AVB)
- Focus on improving the real-time behavior of IEEE 802 network technologies.
- TSN focuses on four main aspects:
 - Temporal synchronization among devices
 - End-to-end bounded latency
 - High reliability for real-time traffic streams
 - Management of network resources.

IEEE Time-Sensitive Networking


• TSN Standards Overview

IEEE Time-Sensitive Networking

• TSN forwarding enhancements

Adopted criteria

Real-time performance

- Latency and jitter figures of real-time traffic
- Overhead
 - Consumed/wasted bandwidth

Mutual isolation

• Support to heterogeneous traffic types without mutual interference

Granularity of QoS control

• Diversity and parametrization of allowed QoS policies;

Traffic management architecture

• Logical management architectures

Flexibility

• Ability to create/modify reservations promptly/dynamically

Real-time performance

► TSN

- [+] Supports TT and ET traffic (transmission gates, CBS, ...) with low latency
- [-] Limited number of classes (6 in practice), flat servers limit RT performance of ET traffic

OpenFlow

• [-] No notion of real-time and time-triggered traffic. Poor performance.

- [++] FTT-OF, OF-RT support low latency TT and ET traffic (FTT arch)
- [+] SDPROFINET: support for TT, but lacks support for ET
- [+] TSSDN: supports TT with few limitations (node-level TX control)
- [-] SDN-HSF: no support for TT. Enhance queuing provides isolation and BW control for ET traffic

Criteria		TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
RT Performance	TT	5	1	5	4	5	1	5
	ET	3	1	5	1	3	3	5

Overhead

- ► TSN
 - [-] Reserved TT slots and frame preemption consume bandwidth

OpenFlow

• [+] No relevant overheads

- [--] FTT-OF/OF RT: periodic trigger messages + idle time in TT windows
- [-] SDPROFINET/TSSDN: only window idle time
- [+] SDN-HSF: No relevant overheads

Criteria	TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
Overhead	4	5	3	4	4	5	3

Mutual isolation

- ► TSN
 - [+] Segregation of TT and ET traffic, filtering and policing
 - [-] Limited number of traffic classes
- OpenFlow
 - [--] No intrinsic notion/distinction of traffic types

- [++] FTT-OF/OF RT: strict segregation of TT/ET/NRT traffic
- [+] SDPROFINET/TSSDN: TT traffic segregation.
- [--] SDN-HSF: No intrinsic notion/support to traffic types

Criteria	TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
Mut. Isolation	4	1	5	2	3	1	5

QoS Granularity

► TSN

- [-] Overall modest
 - QoS specified per class, not per stream
 - Lacks explicit deadlines, precedence constraints, ...
 - CBS parameters specified as frames per interval and maximum latency

OpenFlow

• [--] Only bandwidth and priorities

- [++] FTT-OF/OF-RT: full set of common QoS attributes
- [+] SDPROFINET: allows capturing common QoS attributes (from formal spec)
- [-] TSSDN: only periodicity of TT traffic (constrained to integer multiples of cycle)
- [-] SDN-HSF: Only bandwidth and queuing discipline

Criteria	TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
QoS Granularity	3	1	5	2	4	2	5

Traffic Management Architecture

► TSN

- [++] Distributed and centralized architectures
 - Scalability and efficiency, remote configuration
- OpenFlow
 - [-] Restricted to (logically) centralized management

- [-] FTT-OF/OF RT: only centralized (master node)
- [+] SDNPROFINET: multiple controllers on a remote control center
- [-] TSSDN/SDN-HSF: same as OF

Criteria	TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
Management Arch.	5	3	3	3	4	3	3

Flexibility

► TSN

- [-] Allows configuration but with restrictions (e.g. modifications imply tear down + creation, implying multiple messages, timeouts, ...)
- [-] No application support for QoS management

OpenFlow

• [+] Highly flexible, but no application support for QoS management

- [++] FTT-OF/OF-RT: online creation/modification/elimination + admission control + QoS management support
- [+] SDPROFINET/TSSDN/SDN-HSF: share properties of OF

Criteria	TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
Flexibility	3	4	5	4	4	4	5

Overview

Criteria		TSN	OpenFlow	FTT-OpenFlow	TSSDN	SDPROFINET	SDN-HSF	OpenFlow RT
RT Performance	TT	5	1	5	4	5	1	5
	ET	3	1	5	1	3	3	5
Overhead		4	5	3	4	4	5	3
Mut. Isolation		4	1	5	2	3	1	5
QoS Granularity		3	1	5	2	4	2	5
Management Arch.		5	3	3	3	4	3	3
Flexibility		3	4	5	4	4	4	5

From 1 (Worse) to 5 (Better)

Remarks

- Overall TSN performs well.
 - Limitations on performance and flexibility arise from backward compatibility.
 - Configurable but without inbuilt mechanisms for online QoS management
- Plain OF performs poorly in all aspects related with QoS and real-time
- Extensions show that the SDN concept can be augmented to support real-time and can outperform TSN in term of performance and mostly flexibility

Conclusions

- Industry 4.0 poses new requirements on the communication infrastructure
 - Heterogeneity, flexibility, adaptability, ...
 - Existing industrial communication protocols cannot cope with those requirements
- Two innovative approaches: TSN and SDN
 - TSN
 - Overall good performance
 - Evolutionary approach bring inherent limitations and high complexity
 - Supported by IEEE and many players
 - SDN
 - Disruptive/clean slate, concept of network programmability
 - Highly flexible and effective, but lacks real-time performance
 - Extensions show that SDN can be augmented to allow RT services
 - Further R&D needed to ascertain its full potential

