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Real-time system

� Real-Time System requires:

— Logical Correctness: Produces correct outputs.

— Temporal Correctness: Produces outputs at the right time.

� Real-time task
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� Real-time task

— predict its worst-case execution time

— schedule it to meet its deadline

= job release = job deadline
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NUMA  Architecture 

� Modern NUMA (non-uniform memory access) architectures: 

— CPU partitions sets of cores into “node”:
1 local + several remote controllers

— Each memory controller (node) consists of multilevel 
resources (channel, rank and bank)
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Core Isolation � Hard Real-Time Composition

� Challenge: shared resources

— One core execution affects other cores

� Objective: Isolate cores

— Allows compositional timing analysis

� Application: mission critical hard real-time
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� Application: mission critical hard real-time

— Automated driving…



DRAM Organization

� DRAM bank array has: rows+columns of data cells

� Load the row which contains requested data into Row Buffer 

— Row Buffer hit vs. Row Buffer miss
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Memory Controller

� DRAM banks can be accessed in parallel
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Motivation

� Apps on NUMA arch. experience varying execution times due to 

— Remote memory node accesses

— Conflict in memory banks/controllers 
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Past: Memory Predictability by Coloring

� Local node policy under standard buddy allocation / numa library

— Not bank aware

— numa library only works on heap memory 

� Previous Work

— Our Controller-Aware Memory Coloring (CAMC) @ SAC’18

— NUMA causes unpredictable 
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— NUMA causes unpredictable 
execution time

— New memory allocator
in kernel via mmap() syscall,
no hardware modifications

— Each task gets private
memory  (coloring)
on local NUMA node

— Avoid remote refs, bank conflicts
� predictable exec., lower performance, lower utilization



Memory Frame Color Selection

� Bank color (bc) of a physical page

� � � �

Physical Address 0 15 16 17 18 19 20 31

channel

rank

bank
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bc = ((node�NN �NC+channel)�NR+rank)�NB+bank

—NN: # nodes (mem controllers) of a system

—NC: # channels per controller

—NR: # ranks per channel

—NB: # banks per rank

� Opteron 6128: NN=4, NC=2, NR=2, NB=8, Total of 128 colors

� Example: page in node 0, channel 1, rank 1 and bank 2
� color is ((0�4�2+1)�2+1)*8+2=26



Focus in this Paper: DRAM Refresh

� Dynamic Random Access Memory (DRAM)

— data is stored in the capacitor as 1 or 0 (electrically 
charged/discharged)

— capacitors slowly leak their charge over time

— requires cells to be refreshed, otherwise data would be lost.
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Unpredictability due to DRAM Refresh

� Refresh commands to all DRAM cells periodically issued by DRAM 
controller to maintain data validity.

— row-buffer is closed

— any memory access deferred until refresh completes

� Distributed Refresh vs. Burst refresh

11



Unpredictability due to DRAM Refresh

� Refresh commands to all DRAM cells periodically issued by DRAM 
controller to maintain data validity

— row-buffer is closed

— any memory access deferred until refresh completes

� Distributed Refresh vs. Burst refresh
Retention Time (tRET)
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tRFCtREFI

Retention Time (tRET)



DRAM Refresh Trends: It’s getting worse

� tRET: 64 ms / 32 ms. determined by temperature (85 C) 

� tRFC increases quickly with growing DRAM densities

Chip Density # banks #rows/bank #rows/bin tRFC

1Gb 8 16K 16 110 ns [1]

2Gb 8 32K 32 160 ns [1]
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� [1] Standard, JEDEC, DDR3 SDRAM

� [2] Standard, JEDEC, DDR4 SDRAM

� [3] Jamie Liu, Onur Mutlu et al. "RAIDR: Retention-aware intelligent DRAM 
refresh." ACM SIGARCH Computer Architecture News. 2012.

2Gb 8 32K 32 160 ns [1]

4Gb 8 64K 64 260 ns [1]

8Gb 8 128K 128 350 ns [1]

16Gb 8 256K 256 550 ns [2]

32Gb 8 512K 512 > 1 us [3]

64Gb 8 1M 1K > 2 us [3]



Challenge: Refresh Delay

� Auto-refresh : recharges all the memory cells within the 
“retention time” 

— a rank during refresh becomes unavailable to memory 
requests until the refresh completes (tRFC). 

— all bank row buffers of this rank closed (tRP) and need to be 
re-opened (tRAS)
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re-opened (tRAS)

— More bank row buffer misses around refreshes. 



Challenge: Refresh Delay

� Auto-refresh : recharges all the memory cells within the 
“retention time”

— a rank during refresh becomes unavailable to memory 
requests until the refresh completes (tRFC). 

— all bank row buffers of this rank closed (tRP) and need to be 
re-opened (tRAS)

15

re-opened (tRAS)

— More bank row buffer misses around refreshes. 

1. Increase in memory latency

2. Significant fluctuation of memory reference latency. 



Challenge: Refresh Delay

� As density and size of DRAM grow:

— more rows required per DRAM chip

— longer tRFC

— higher probability for refresh interference 
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Challenge: Refresh Delay

� As density and size of DRAM grow:

— more rows required per DRAM chip

— longer tRFC

— higher probability for refresh interference 
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1. Increases length a refresh operation

2. Reduces memory throughput



Solution: Colored Refresh Server (CRS)

� Partition DRAM memory at rank granularity

— Refreshes rotate round-robin from rank to rank

— Assign real-time tasks to different ranks via colored memory 
allocation (say: green,blue)

— Schedule 2 server tasks to refresh green/blue memory

— Ensure that no blue task runs when green server active
and vice versa: no green task runs when blue server active
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— Ensure that no blue task runs when green server active
and vice versa: no green task runs when blue server active

� Cooperative scheduling real-time tasks and refresh operations
� memory requests no longer suffer from refresh interference



Architecture of Colored Refresh Server

� Hierarchical model

— System Level

− Refresh tasks w/ static priority: Refresh Tasks > S1 > S2 tasks

— Server Level (inside the servers)

− User tasks scheduled inside servers

− w/ memory colored diametric to server
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− w/ memory colored diametric to server

− with any real-time scheduling policy: EDF, RM, …

− Refresh Lock/unlock tasks: no memory blocking during refresh

Refresh 

Lock/Unlock Tasks

… …



Refresh Lock and Unlock Tasks

� partition entire DRAM space into two “colors”
— e.g., c1(k0, k1 ... ki), and c2(ki+1, ki+2 ... kK-1).

� refresh lock tasks,  and 
— period of tRET(64ms)
— trigger refresh for c1 (green) and c2 (blue), respectively

� refresh unlock tasks,  and 
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� refresh unlock tasks,  and 

— update corresponding color to be available  once refresh finishes



Server Model

� Server model, S(W,A, c, ps , es)

— with CPU time as resource

— Where:

− W is the workload model (applications)

− A is the scheduling algorithm, e.g., EDF or RM

− c denotes the memory color assigned to this server, i.e., a 
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− c denotes the memory color assigned to this server, i.e., a 
set of memory ranks available for allocation

− ps is the server period

− es is the server budget



Server Model

� Set execution budget to es at time instants k* ps, where k > 0. 

� Any unused execution budget cannot be carried over to next period

� The refresh server can execute when

— (i) its budget is not zero;
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— (i) its budget is not zero;

— (ii) its available task queue is not empty; and

— (iii) its memory color is not locked by a “refresh task” 
(introduced above). 

— Otherwise, it remains suspended.



Example of CRS

� T1(16ms, 4ms)
T2(16ms, 2ms)
T3(32ms, 8ms)
T4(64ms, 8ms)

S ((T , T ), RM, c (k ,k ,k ,k ), 16ms , 6ms )
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� S1((T1, T2), RM, c1(k0,k1,k2,k3), 16ms , 6ms )
S2((T3, T4), RM, c2(k4,k5,k6,k7), 16ms , 6ms)

� Phases φ of S1 and S2 are tRET/2 and 0, respectively

— i.e., S2 (colors c2) refreshed first



Example of CRS
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Schedulability Analysis within a Server

� Given a server S(W,A, c , ps , es) [SL03], 

— Periodic Capacity Bound (PCB):

− bound period (ps ) and deadline (es)

− with workload (W) and algorithm (A)

— Utilization Bound (UB)

− Bound utilization of workload
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− Bound utilization of workload

− with ps, es , and A 

� [SL03] Shin, I. & Lee, I. “Periodic resource model for 
compositional real-time guarantees”. RTSS. 2003.

Refresh 

Lock/Unlock Tasks

… …



Schedulability Analysis

� Servers + refresh lock/unlock tasks at system level
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� Time Demand Analysis

— Refresh tasks w/ static priority: Lock/Unlock Tasks > S1 > S2

Refresh 

Lock/Unlock Tasks

… …



Colored Refresh Server Design

� Off-line algorithm 

— Searches entire range of available configurations

— Find minimum refresh overhead & budgets for servers

— Short tasks: create copy tasks 

— See dissertation [Pan’18]

27

� Colored Refresh Server

— Guarantees schedulability
(if task set was schedulable w/o CRS)

— Cost much lower overhead than auto-refresh
(removes entire refresh overhead in most cases)



Colored Refresh Server Implementation

� SimpleScalar

— simulates execution of application

— generates memory tracefile

� Scheduler & Coloring Tool (from CAMC [SAC’18] work)

� RTMemController (only to obtain timings, no Ethereal support)

28

RTMemController (only to obtain timings, no Ethereal support)

— schedule memory transactions, determine access latency



Experimental Setup

� Single core processor

— split 16KB data and instruction caches, 

— unified 128KB L2 cache

— cache line size is 64B. 

� JEDEC-compliant DDR3/DDR4 SDRAM 
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JEDEC-compliant DDR3/DDR4 SDRAM 

— varied memory density: 1/2/4/8/16/32/64Gb)

� The DRAM retention time: tRET=64ms

— 8 ranks (K=8) & 1 memory controller.

— Issue refresh by memory controllers at rank granularity.



Real-Time Tasks

� Malardalen benchmark task set 

� S1( (cnt, lms, st), EDF,  c1(k0,k1,k2,k3), 4ms, 2.4ms )
S2( (compress, matmult), EDF, c2(k4,k5,k6,k7), 4ms, 1.6ms)

Execution Time Period

30

Execution Time Period

cnt 3 ms 20 ms

compress 1.2 ms 10 ms

lms 1.6 ms 10 ms

matmult 10 ms 40 ms

st 2 ms 9 ms



Evaluation

� CRS hides memory latency penalty of auto-refresh, 
which increases with memory density under autorefresh.
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AutoRefresh Latency Normalized to CRS



Evaluation

� Auto-refresh has increasing probability (more accesses) of 
memory references to interfere with each other with higher 
DRAM density (depends on memory access patterns in 
benchmarks)  while CRS eliminates this variability
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Normalized 

to CRS



Evaluation

� Compared to auto-refresh, 

— CRS reduces execution time of tasks and system utilization 

— performance of CRS remains stable and predictable
irrespective of DRAM density.

� CRS as good as it gets � same as hypothetical “no refresh”
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Deadline missed



Evaluation

� DDR4 Fine Granularity Refresh (FGR)

— Create a range of refresh options 

— Provide a trade-off between refresh latency and frequency.

� CRS exhibits better performance and higher task predictability 
than DDR4’s FGR.
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Evaluation

� CRS obtains better performance and higher task predictability 
than burst refresh of the closest prior work. [BM10] 
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� [BM10] Bhat, Balasubramanya & Mueller, Frank 
“Making DRAM refresh predictable”, ECRTS 2010



Conclusion

� Make memory references more predictable w/ coloring

— Controller-Aware Memory Coloring (CAMC) [SAC’18]

− reduce varied memory access latency

− provide single core equivalence but subject to refresh delay

� Colored Refresh Server:
− hide refresh delays & reduce DRAM access latencies 
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− hide refresh delays & reduce DRAM access latencies 

− exhibit better performance &
higher task predictability than auto-refresh & [BM’10]

− hierarchical server task scheduling, apps inside servers

− supports any real-time scheduling policy in server (EDF, RM)

− realized in software, applicable to commercial off-the-shelf 
(COTS) systems.

� Supports Core Isolation � real-time composability

� supported in part by NSF grants 1239246,1329780,1525609 and 1813004.


