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Real-time system

e Real-Time System requires:
— Logical Correctness: Produces correct outputs.

— Temporal Correctness: Produces outputs at the right time.

e Real-time task
— predict its worst-case execution time
— schedule it to meet its deadline
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NUMA Architecture

e Modern NUMA (non-uniform memory access) architectures:
— CPU partitions sets of cores info "node"
1 local + several remote controllers
— Each memory controller (node) consists of multilevel
resources (channel, rank and bank)
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Core Isolation > Hard Real-Time Composition

e Challenge: shared resources
— One core execution affects other cores

e Objective: Isolate cores
— Allows compositional timing analysis

e Application: mission critical hard real-time
— Automated driving... UBER ATC
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DRAM Organization

e DRAM bank array has: rows+columns of data cells

e Load the row which contains requested data into Row Buffer
— Row Buffer hit vs. Row Buffer miss
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Memory Controller

e DRAM banks can be accessed in parallel

Memory requests from processors (last-

J

!
(__Channel Scheduler

)

[ level cache)

Request | | I

Buffer | | Bank0 | | Bank 1 Bank 7 | |

| Priority | | Priority | ... Priority | |

' | Queue | | Queue Queue i

Memory r,,,,,,‘r,,,,,,,,,,;' 77777777777777777 v |
Scheduler | | BankO | | Bank 1 Bank7 | |
' [Schedul | |Schedul| ... Schedul i

| er er er |

: Y L 2 L ] :

DRAM address/command

buses

Processor
data bus

|

Read/
Write
Buffers

DRAM
data bus



Motivation

o Apps on NUMA arch. experience varying execution tfimes due to
— Remote memory node accesses
— Conflict in memory banks/controllers
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Past: Memory Predictability by Coloring

e Local node policy under standard buddy allocation / numa library

— Not bank aware
— numa library only works on heap memory

e Previous Work

— Our Controller-Aware Memory Coloring (CAMC) @ SAC'18
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Memory Frame Color Selection

< channel >

Physical Address |0 15|16(17/18/1920

| o]
rank
e Bank color (bc) of a physical page ~ bank
bc = ((nodex*NN *NC+channel)xNR+rank)«NB+bank
—NN: # nodes (mem controllers) of a system
—NC: # channels per controller
—NR: # ranks per channel

—NB: # banks per rank
e Opteron 6128: NN=4, NC=2, NR=2, NB=8, Total of 128 colors

e Example: page in node O, channel 1, rank 1 and bank 2
- color is ((0x4x2+1)x2+1)*8+2=26



Focus in this Paper: DRAM Refresh

e Dynamic Random Access Memory (DRAM)

— data is stored in the capacitor as 1 or O (electrically
charged/discharged)

— capacitors slowly leak their charge over time
— requires cells to be refreshed, otherwise data would be lost.
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Unpredictability due to DRAM Refresh

e Refresh commands to all DRAM cells periodically issued by DRAM
controller to maintain data validity.

— row-buffer is closed
— any memory access deferred until refresh completes

e Distributed Refresh vs. Burst refresh
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Unpredictability due to DRAM Refresh

e Refresh commands to all DRAM cells periodically issued by DRAM
controller to maintain data validity

— row-buffer is closed
— any memory access deferred until refresh completes

e Distributed Refresh vs. Burst refresh
Retention Time (tRET)
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DRAM Refresh Trends: It’s getting worse

e tRET: 64 ms / 32 ms. determined by temperature (85 C)

e tRFC increases quickly with growing DRAM densities

Chip Density | # banks #rows/bank | #rows/bin tRFC

1Gb 8 16K 16 110 ns [1]
26b 8 32K 32 160 ns [1]
4Gb 8 64K 64 260 ns [1]
8Gb 8 128K 128 350 ns [1]
16Gb 8 256K 256 550 ns [2]
326b 8 512K 512 >1us [3]
64Gb 8 IM 1K >2 us [3]

e [1] Standard, JEDEC, DDR3 SDRAM
e [2] Standard, JEDEC, DDR4 SDRAM

e [3]Jamie Liu, Onur Mutlu et al. "RAIDR: Retention-aware intelligent DRAM
refresh." ACM SIGARCH Computer Architecture News. 2012,

13




Challenge: Refresh Delay

e Auto-refresh : recharges all the memory cells within the
“retention time"

— a rank during refresh becomes unavailable to memory
requests until the refresh completes (tRFC).

— all bank row buffers of this rank closed (tRP) and need to be
re-opened (t1RAS)

— More bank row buffer misses around refreshes.
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Challenge: Refresh Delay

e Auto-refresh : recharges all the memory cells within the
“retention fime"

— a rank during refresh becomes unavailable to memory
requests until the refresh completes (tRFC).

— all bank row buffers of this rank closed (tRP) and need to be
re-opened (t1RAS)

— More bank row buffer misses around refreshes.

1. Increase 1n memory latency
2. Significant fluctuation of memory reference latency.
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Challenge: Refresh Delay

e As density and size of DRAM grow:
— more rows required per DRAM chip

— longer tRFC

— higher probability for refresh interference
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Challenge: Refresh Delay

e As density and size of DRAM grow:
— more rows required per DRAM chip
— longer tRFC
— higher probability for refresh interference

1. Increases length a refresh operation
2. Reduces memory throughput
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Solution: Colored Refresh Server (CRS)

e Partition DRAM memory at rank granularity
— Refreshes rotate round-robin from rank to rank

— Assign real-time tasks to different ranks via colored memory
allocation (say: green blue)

— Schedule 2 server tasks to refresh green/blue memory

— Ensure that no blue task runs when green server active
and vice versa: ho green task runs when blue server active

e Cooperative scheduling real-time tasks and refresh operations
-~ memory requests no longer suffer from refresh interference
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Architecture of Colored Refresh Server

e Hierarchical model
— System Level
— Refresh tasks w/ static priority: Refresh Tasks > S; > S, tasks
— Server Level (inside the servers)
— User tasks scheduled inside servers
— w/ memory colored diametric to server
— with any real-time scheduling policy: EDF, RM, ...
— Refresh Lock/unlock tasks: no memory blocking during refresh

______________________________________________________
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' {_Lock/Unlock Tasks
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Refresh Lock and Unlock Tasks

e partition entire DRAM space into two "colors”
— e.g., ¢(ko, ki ... k), and c,(Kkq, Kz ... ke ).

e refresh lock tasks, and
— period of tRET(64ms)

— trigger refresh for c; (green) and ¢, (blue), respectively

e refresh unlock tasks, and

— update corresponding color to be available once refresh finishes
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Lock Task 1: : . Unlock Task 1:
Lock Color Server 2 is Executing Unlock Color

A
Start Refresh Interrupt
Command Y
Color 1 is refreshing
I 1
i€ >

DRAM Work
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Server Model

e Server model, S(W,A, ¢, p,, e.)
— with CPU time as resource
— Wheere:

W is the workload model (applications)
A is the scheduling algorithm, e.g., EDF or RM

c denotes the memory color assigned to this server, i.e., a
set of memory ranks available for allocation

p. is the server period
e, is the server budget
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Server Model

e Set execution budget to e, at time instants k* p,, where k> O,

e Any unused execution budget cannot be carried over to next period

e The refresh server can execute when
— (i) its budget is not zero;
— (ii) its available task queue is not empty; and

— (iii) its memory color is not locked by a "refresh task"
(infroduced above).

— Otherwise, it remains suspended.
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Example of CRS

e T,(16ms, 4ms)
T,(16ms, 2ms)
T5(32ms, 8ms)
T,(64ms, 8ms)

o Sl((Tll TZ)I RM, Cl(k01k11k21k3)l 16m5 , 6m5 )
S,((T3, Ta), RM, co(Kky ks ke k), 16ms , 6ms)

e Phases ¢ of S;and S, are tTRET/2 and O, respectively
— i.e., S, (colors c,) refreshed first
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Example of CRS
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Schedulability Analysis within a Server

e Givenaserver S(W,A, c, p,,e,) [SLO3],
— Periodic Capacity Bound (PCB):
— bound period (p, ) and deadline (e,)
— with workload (W) and algorithm (A)
— Utilization Bound (UB)
— Bound utilization of workload
— with p,, e, and A

e [SLO3] Shin, I. & Lee, I. "Periodic resource model for
compositional real-time guarantees”. RTSS. 2003.
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Schedulability Analysis

e Servers + refresh lock/unlock tasks at system level
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Colored Refresh Server Design

e Off-line algorithm
— Searches entire range of available configurations
— Find minimum refresh overhead & budgets for servers
— Short tasks: create copy tasks
— See dissertation [Pan'18]

e Colored Refresh Server

— Guarantees schedulability
(if task set was schedulable w/o CRS)

— Cost much lower overhead than auto-refresh
(removes entire refresh overhead in most cases)
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Colored Refresh Server Implementation

e SimpleScalar
— simulates execution of application
— generates memory tracefile

e Scheduler & Coloring Tool (from CAMC [SAC'18] work)

e RTMemConftroller (only to obtain timings, no Ethereal support)
— schedule memory transactions, determine access IaTency
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Experimental Setup

e Single core processor
— split 16KB data and instruction caches,
— unified 128KB L2 cache
— cache line size is 64B.

o JEDEC-compliant DDR3/DDR4 SDRAM
— varied memory density: 1/2/4/8/16/32/646Gb)
e The DRAM retention time: TRET=64ms

— 8 ranks (K=8) & 1 memory controller.
— TIssue refresh by memory controllers at rank granularity.
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Real-Time Tasks

e Malardalen benchmark task set

e S,((cnt, Ims, st), EDF, ci(koki ks ks3), 4ms, 2.4ms )
S,( (compress, matmult), EDF, c,(ks,ks ke ks), 4ms, 1.6ms)

Execution Time |Period

cnt 3 ms 20 ms
compress 1.2 ms 10 ms
Ims 1.6 ms 10 ms
matmult 10 ms 40 ms

st 2 ms 9 ms




Evaluation

e CRS hides memory latency penalty of auto-refresh,
which increases with memory density under autorefresh.
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Evaluation

e Auto-refresh has increasing probability (more accesses) of
memory references to interfere with each other with higher
DRAM density (depends on memory access patterns in
benchmarks) while CRS eliminates this variability
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Evaluation

e Compared to auto-refresh,

— CRS reduces execution time of tasks and system utilization
— performance of CRS remains stable and predictable

irrespective of DRAM density.

> CRS as good as it gets > same as hypothetical "no refresh”
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Evaluation

e DDR4 Fine Granularity Refresh (FGR)
— Create a range of refresh options
— Provide a trade-off between refresh latency and frequency.

e CRS exhibits better performance and higher task predictability
Than DDR4'S FGR P FGR_IK — FGR_4K
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Evaluation

e CRS obtains better performance and higher task predictability
than burst refresh of the closest prior work. [BM10]

——- auto-refresh —=— Colored Refresh Server
—a~ burst-refresh

wn
o

AN

Normalized Memory Latency
I

\

s s

1 e rugp? 7 T " o ¥
1 2 4 8 16 32 64
DRAM density (Gb)

[

e [BMI10] Bhat, Balasubramanya & Mueller, Frank
"Making DRAM refresh predictable”, ECRTS 2010
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Conclusion

e Make memory references more predictable w/ coloring
— Conftroller-Aware Memory Coloring (CAMC) [SAC'18]
— reduce varied memory access latency
— provide single core equivalence but subject to refresh delay

e Colored Refresh Server.
— hide refresh delays & reduce DRAM access latencies

— exhibit better performance &
higher task predictability than auto-refresh & [BM'10]

— hierarchical server task scheduling, apps inside servers
— supports any real-time scheduling policy in server (EDF, RM)

— realized in software, applicable to commercial of f-the-shelf
(COTS) systems.

e Supports Core Isolation > real-time composability
e supported in part by NSF grants 1239246,1329780,1525609 and 1813004.
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